Spaces:
Sleeping
Sleeping
File size: 5,953 Bytes
e8c9855 3f68a6f e8c9855 739af6c 2e03377 84cbbed 2e03377 e8c9855 2e03377 e8c9855 075f9e9 e8c9855 2e03377 e8c9855 d99b8a5 2e03377 d99b8a5 84cbbed 1336818 e8c9855 d99b8a5 2e03377 d99b8a5 84cbbed 1336818 e8c9855 2e03377 e8c9855 2e03377 e8c9855 2e03377 e8c9855 2e03377 e8c9855 2e03377 e8c9855 2e03377 e8c9855 2e03377 e8c9855 2e03377 70b3f00 ff0e3f2 84cbbed 2e03377 84cbbed 2e03377 e8c9855 2e03377 e8c9855 2e03377 e8c9855 2e03377 e8c9855 1336818 2e03377 e8c9855 3f68a6f 2e03377 1336818 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
from dotenv import load_dotenv
from openai import OpenAI
import json
import os
import requests
from PyPDF2 import PdfReader
import gradio as gr
import gdown
from datetime import datetime
from pathlib import Path
import zipfile
load_dotenv(override=True)
# βββ Ensure chat_logs Folder Exists βββ
logs_path = Path("chat_logs")
logs_path.mkdir(exist_ok=True)
# βββ Pushover Notifications βββββββββββ
def push(text):
try:
keep_path = logs_path / ".keep"
keep_path.touch(exist_ok=True)
requests.post(
"https://api.pushover.net/1/messages.json",
data={
"token": os.getenv("PUSHOVER_TOKEN"),
"user": os.getenv("PUSHOVER_USER"),
"message": text,
}
)
except Exception as e:
print(f"Pushover error: {e}")
# βββ Tool Functions βββββββββββββββββββ
def record_user_details(email, name="Name not provided", notes="not provided"):
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = logs_path / f"session_{timestamp}.json"
with open(filename, "w", encoding="utf-8") as f:
json.dump(me.session_log, f, indent=2)
msg = f"[New Contact]\nName: {name}\nEmail: {email}\nNotes: {notes}\n\nπ View log: {filename}"
push(msg)
return {"recorded": "ok"}
def record_unknown_question(question):
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = logs_path / f"session_{timestamp}.json"
with open(filename, "w", encoding="utf-8") as f:
json.dump(me.session_log, f, indent=2)
msg = f"[Unknown Question]\nQ: {question}\n\nπ View log: {filename}"
push(msg)
return {"recorded": "ok"}
tools = [
{"type": "function", "function": {
"name": "record_user_details",
"description": "Record user contact information.",
"parameters": {
"type": "object",
"properties": {
"email": {"type": "string"},
"name": {"type": "string"},
"notes": {"type": "string"}
},
"required": ["email"]
}
}},
{"type": "function", "function": {
"name": "record_unknown_question",
"description": "Record questions unable to be answered.",
"parameters": {
"type": "object",
"properties": {
"question": {"type": "string"}
},
"required": ["question"]
}
}}
]
# βββ Core Chatbot Class βββββββββββββββ
class Me:
def __init__(self):
self.openai = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
self.name = "Jacob Isaacson"
self.session_log = []
logs_path.mkdir(exist_ok=True)
gdown.download("https://drive.google.com/uc?id=1xz2RowkImpI8odYv8zvKdlRHaKfILn40", "linkedin.pdf", quiet=False)
reader = PdfReader("linkedin.pdf")
self.linkedin = "".join(page.extract_text() or "" for page in reader.pages)
gdown.download("https://drive.google.com/uc?id=1hjJz082YFSVjFtpO0pwT6Tyy3eLYYj6-", "summary.txt", quiet=False)
with open("summary.txt", "r", encoding="utf-8") as f:
self.summary = f.read()
self.archive_logs()
def system_prompt(self):
return f"""You are acting as {self.name}. You're answering questions about {self.name}'s career, experience, and skills.
Be professional and conversational.
If you can't answer something, call `record_unknown_question`. If a user seems interested, ask for their email and use `record_user_details`.
## Summary:
{self.summary}
## LinkedIn Profile:
{self.linkedin}
"""
def handle_tool_call(self, tool_calls):
results = []
for tool_call in tool_calls:
func = globals()[tool_call.function.name]
arguments = json.loads(tool_call.function.arguments)
result = func(**arguments)
results.append({
"role": "tool",
"tool_call_id": tool_call.id,
"content": json.dumps(result)
})
return results
def chat_stream(self, message, history):
messages = [{"role": "system", "content": self.system_prompt()}]
for msg in history:
messages.append(msg)
messages.append({"role": "user", "content": message})
self.session_log.append({"role": "user", "content": message})
response = self.openai.chat.completions.create(
model="gpt-4o", messages=messages, tools=tools, stream=False
)
reply = response.choices[0].message
full_response = reply.content or ""
self.session_log.append({"role": "assistant", "content": full_response})
self.save_session_log()
yield full_response + "\n\nπ¬ Let me know if youβd like to follow up or need help connecting with Jacob."
def save_session_log(self):
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = logs_path / f"session_{timestamp}.json"
with open(filename, "w", encoding="utf-8") as f:
json.dump(self.session_log, f, indent=2)
def archive_logs(self):
zip_path = logs_path / "weekly_archive.zip"
with zipfile.ZipFile(zip_path, "w") as archive:
for log_file in logs_path.glob("session_*.json"):
archive.write(log_file, arcname=log_file.name)
me = Me()
with gr.Blocks(title="Jacob Isaacson Chatbot") as iface:
with gr.Row():
gr.Markdown("# Chat with Jacob Isaacson")
gr.ChatInterface(
fn=me.chat_stream,
chatbot=gr.Chatbot(show_copy_button=True),
type="messages",
chatbot_initial_message={
"role": "assistant",
"content": "Hello, my name is Jacob Isaacson. Ask any questions about my professional career!"
}
)
iface.launch()
|