Spaces:
Sleeping
Sleeping
File size: 7,226 Bytes
e8c9855 3f68a6f e8c9855 739af6c e8c9855 d4c8572 428921e e8c9855 075f9e9 e8c9855 1336818 d4c8572 1336818 e8c9855 428921e e8c9855 1336818 d4c8572 1336818 e8c9855 428921e e8c9855 739af6c e8c9855 739af6c e8c9855 70b3f00 e8c9855 70b3f00 ff0e3f2 e8c9855 ff0e3f2 e8c9855 1336818 e8c9855 3f68a6f e8c9855 1336818 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
from dotenv import load_dotenv
from openai import OpenAI
import json
import os
import requests
from PyPDF2 import PdfReader
import gradio as gr
import gdown
from datetime import datetime
from pathlib import Path
import zipfile
load_dotenv(override=True)
def push(text):
try:
Path("chat_logs").mkdir(exist_ok=True)
requests.post(
requests.post(
"https://api.pushover.net/1/messages.json",
data={
"token": os.getenv("PUSHOVER_TOKEN"),
"user": os.getenv("PUSHOVER_USER"),
"message": text,
}
)
except Exception as e:
print(f"Pushover error: {e}")
def record_user_details(email, name="Name not provided", notes="not provided"):
latest_log = "
".join([
f"{entry['role'].capitalize()}: {entry['content'][:200]}"
for entry in me.session_log[-6:]
])
msg = f"[New Contact]
Name: {name}
Email: {email}
Notes: {notes}
Recent Chat:
{latest_log}"
push(msg)
return {"recorded": "ok"}
return {"recorded": "ok"}
def record_unknown_question(question):
latest_log = "
".join([
f"{entry['role'].capitalize()}: {entry['content'][:200]}"
for entry in me.session_log[-6:]
])
msg = f"[Unknown Question]
Q: {question}
Recent Chat:
{latest_log}"
push(msg)
return {"recorded": "ok"}
return {"recorded": "ok"}
record_user_details_json = {
"name": "record_user_details",
"description": "Use this tool to record that a user is interested in being in touch and provided an email address",
"parameters": {
"type": "object",
"properties": {
"email": {"type": "string"},
"name": {"type": "string"},
"notes": {"type": "string"}
},
"required": ["email"],
"additionalProperties": False
}
}
record_unknown_question_json = {
"name": "record_unknown_question",
"description": "Record a question that couldn't be answered",
"parameters": {
"type": "object",
"properties": {
"question": {"type": "string"}
},
"required": ["question"],
"additionalProperties": False
}
}
tools = [
{"type": "function", "function": record_user_details_json},
{"type": "function", "function": record_unknown_question_json}
]
class Me:
def __init__(self):
self.openai = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
self.name = "Jacob Isaacson"
self.session_log = []
Path("chat_logs").mkdir(exist_ok=True)
gdown.download("https://drive.google.com/uc?id=1xz2RowkImpI8odYv8zvKdlRHaKfILn40", "linkedin.pdf", quiet=False)
reader = PdfReader("linkedin.pdf")
self.linkedin = "".join(page.extract_text() or "" for page in reader.pages)
gdown.download("https://drive.google.com/uc?id=1hjJz082YFSVjFtpO0pwT6Tyy3eLYYj6-", "summary.txt", quiet=False)
with open("summary.txt", "r", encoding="utf-8") as f:
self.summary = f.read()
self.archive_logs()
def system_prompt(self):
return f"""You are acting as {self.name}. You're answering questions on {self.name}'s website about his career, experience, and skills.
Be professional and conversational, as if talking to a potential employer or client.
If you can't answer something, call `record_unknown_question`. If a user seems interested, ask for their email and use `record_user_details`.
## Summary:
{self.summary}
## LinkedIn Profile:
{self.linkedin}
"""
def handle_tool_call(self, tool_calls):
results = []
for tool_call in tool_calls:
tool_name = tool_call.function.name
arguments = json.loads(tool_call.function.arguments)
tool = globals().get(tool_name)
result = tool(**arguments) if tool else {}
results.append({"role": "tool", "tool_call_id": tool_call.id, "content": json.dumps(result)})
return results
def chat_stream(self, message, history):
messages = [{"role": "system", "content": self.system_prompt()}]
for msg in history:
if isinstance(msg, dict) and msg.get("role") in ["user", "assistant"]:
messages.append(msg)
messages.append({"role": "user", "content": message})
self.session_log.append({"role": "user", "content": message})
# First check for tool calls
response = self.openai.chat.completions.create(
model="gpt-4o",
messages=messages,
tools=tools,
stream=False
)
reply = response.choices[0].message
if reply.tool_calls:
tool_results = self.handle_tool_call(reply.tool_calls)
messages.append(reply)
messages.extend(tool_results)
final_response = self.openai.chat.completions.create(
model="gpt-4o",
messages=messages,
tools=tools,
stream=True
)
full_response = ""
for chunk in final_response:
delta = chunk.choices[0].delta
if hasattr(delta, "content") and delta.content:
full_response += delta.content
yield full_response
else:
stream = self.openai.chat.completions.create(
model="gpt-4o",
messages=messages,
tools=tools,
stream=True
)
full_response = ""
for chunk in stream:
delta = chunk.choices[0].delta
if hasattr(delta, "content") and delta.content:
full_response += delta.content
yield full_response
full_response += "\n\n💬 Let me know if you’d like to follow up or need help connecting with Jacob."
self.session_log.append({"role": "assistant", "content": full_response})
self.save_session_log()
def save_session_log(self):
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"chat_logs/session_{timestamp}.json"
with open(filename, "w", encoding="utf-8") as f:
json.dump(self.session_log, f, indent=2)
def archive_logs(self):
zip_path = "chat_logs/weekly_archive.zip"
with zipfile.ZipFile(zip_path, "w", zipfile.ZIP_DEFLATED) as archive:
for log_file in Path("chat_logs").glob("session_*.json"):
archive.write(log_file, arcname=log_file.name)
me = Me()
with gr.Blocks(title="Jacob Isaacson Chatbot") as iface:
with gr.Row():
gr.Image("jacob.png", width=100, show_label=False)
gr.Markdown("### Chat with Jacob Isaacson\nAsk about Jacob's background, skills, or career. \n🛡️ *All chats are logged for improvement purposes.*")
gr.ChatInterface(
fn=me.chat_stream,
chatbot=gr.Chatbot(show_copy_button=True),
type="messages",
chatbot_initial_message={"role": "assistant", "content": "Hello, my name is Jacob Isaacson. Please ask me any questions about my professional career and I will do my best to respond."}
)
if __name__ == "__main__":
iface.launch()
|