File size: 7,368 Bytes
e8c9855
 
 
 
 
 
 
 
 
 
 
3f68a6f
e8c9855
739af6c
e8c9855
 
bceb0df
 
 
 
e8c9855
 
 
 
 
 
 
075f9e9
e8c9855
 
 
 
d99b8a5
bceb0df
 
 
 
 
d99b8a5
 
bceb0df
1336818
e8c9855
 
 
d99b8a5
bceb0df
 
 
 
 
d99b8a5
 
bceb0df
1336818
e8c9855
 
917fa89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8c9855
917fa89
 
e8c9855
 
 
 
 
 
 
bceb0df
2e03377
e8c9855
 
 
 
 
 
 
 
 
 
 
917fa89
 
 
e8c9855
917fa89
e8c9855
 
917fa89
e8c9855
 
 
 
 
 
 
917fa89
e8c9855
917fa89
 
 
e8c9855
 
 
 
 
 
917fa89
 
e8c9855
 
 
 
 
309bd9f
917fa89
 
d6b9eda
70b3f00
ff0e3f2
d6b9eda
 
 
 
 
 
 
 
 
 
 
 
309bd9f
d6b9eda
 
 
 
 
 
 
 
 
 
 
 
 
2e03377
 
84cbbed
e8c9855
 
bceb0df
e8c9855
 
 
 
bceb0df
917fa89
bceb0df
e8c9855
 
 
 
 
 
917fa89
 
5b130e9
e8c9855
 
a7a54b1
309bd9f
a7a54b1
 
bceb0df
 
a7a54b1
917fa89
 
e8c9855
3f68a6f
917fa89
 
bceb0df
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
from dotenv import load_dotenv
from openai import OpenAI
import json
import os
import requests
from PyPDF2 import PdfReader
import gradio as gr
import gdown
from datetime import datetime
from pathlib import Path
import zipfile

load_dotenv(override=True)

def push(text):
    try:
        Path("chat_logs").mkdir(exist_ok=True)
        keep_path = Path("chat_logs/.keep")
        if not keep_path.exists():
            keep_path.touch()
        requests.post(
            "https://api.pushover.net/1/messages.json",
            data={
                "token": os.getenv("PUSHOVER_TOKEN"),
                "user": os.getenv("PUSHOVER_USER"),
                "message": text,
            }
        )
    except Exception as e:
        print(f"Pushover error: {e}")

def record_user_details(email, name="Name not provided", notes="not provided"):
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    filename = f"chat_logs/session_{timestamp}.json"
    latest_log = "\n".join([
        f"{entry['role'].capitalize()}: {entry['content'][:200]}"
        for entry in me.session_log[-6:]
    ])
    with open(filename, "w", encoding="utf-8") as f:
        json.dump(me.session_log, f, indent=2)
    msg = f"[New Contact]\nName: {name}\nEmail: {email}\nNotes: {notes}\n\n🔗 View log: {filename}"
    push(msg)
    return {"recorded": "ok"}

def record_unknown_question(question):
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    filename = f"chat_logs/session_{timestamp}.json"
    latest_log = "\n".join([
        f"{entry['role'].capitalize()}: {entry['content'][:200]}"
        for entry in me.session_log[-6:]
    ])
    with open(filename, "w", encoding="utf-8") as f:
        json.dump(me.session_log, f, indent=2)
    msg = f"[Unknown Question]\nQ: {question}\n\n🔗 View log: {filename}"
    push(msg)
    return {"recorded": "ok"}

record_user_details_json = {
    "name": "record_user_details",
    "description": "Use this tool to record that a user is interested in being in touch and provided an email address",
    "parameters": {
        "type": "object",
        "properties": {
            "email": {"type": "string"},
            "name": {"type": "string"},
            "notes": {"type": "string"}
        },
        "required": ["email"],
        "additionalProperties": False
    }
}

record_unknown_question_json = {
    "name": "record_unknown_question",
    "description": "Record a question that couldn't be answered",
    "parameters": {
        "type": "object",
        "properties": {
            "question": {"type": "string"}
        },
        "required": ["question"],
        "additionalProperties": False
    }
}

tools = [
    {"type": "function", "function": record_user_details_json},
    {"type": "function", "function": record_unknown_question_json}
]

class Me:
    def __init__(self):
        self.openai = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
        self.name = "Jacob Isaacson"
        self.session_log = []
        Path("chat_logs").mkdir(exist_ok=True)

        gdown.download("https://drive.google.com/uc?id=1xz2RowkImpI8odYv8zvKdlRHaKfILn40", "linkedin.pdf", quiet=False)
        reader = PdfReader("linkedin.pdf")
        self.linkedin = "".join(page.extract_text() or "" for page in reader.pages)

        gdown.download("https://drive.google.com/uc?id=1hjJz082YFSVjFtpO0pwT6Tyy3eLYYj6-", "summary.txt", quiet=False)
        with open("summary.txt", "r", encoding="utf-8") as f:
            self.summary = f.read()

        self.archive_logs()

    def system_prompt(self):
        return f"""You are acting as {self.name}. You're answering questions on {self.name}'s website about his career, experience, and skills.
Be professional and conversational, as if talking to a potential employer or client.

If you can't answer something, call `record_unknown_question`. If a user seems interested, ask for their email and use `record_user_details`.

## Summary:
{self.summary}

## LinkedIn Profile:
{self.linkedin}
"""

    def handle_tool_call(self, tool_calls):
        results = []
        for tool_call in tool_calls:
            tool_name = tool_call.function.name
            arguments = json.loads(tool_call.function.arguments)
            tool = globals().get(tool_name)
            result = tool(**arguments) if tool else {}
            results.append({"role": "tool", "tool_call_id": tool_call.id, "content": json.dumps(result)})
        return results

    def chat_stream(self, message, history):
        messages = [{"role": "system", "content": self.system_prompt()}]

        for msg in history:
            if isinstance(msg, dict) and msg.get("role") in ["user", "assistant"]:
                messages.append(msg)

        messages.append({"role": "user", "content": message})
        self.session_log.append({"role": "user", "content": message})

        response = self.openai.chat.completions.create(
            model="gpt-4o",
            messages=messages,
            tools=tools,
            stream=False
        )

        reply = response.choices[0].message

        if reply.tool_calls:
            messages.append(reply)
            tool_results = self.handle_tool_call(reply.tool_calls)
            messages.extend(tool_results)

            follow_up = "✅ I've saved that info. Let me know if you'd like to ask more questions."
            self.session_log.append({"role": "assistant", "content": follow_up})
            yield follow_up
        else:
            stream = self.openai.chat.completions.create(
                model="gpt-4o",
                messages=messages,
                tools=tools,
                stream=True
            )

            full_response = ""
            for chunk in stream:
                delta = chunk.choices[0].delta
                if hasattr(delta, "content") and delta.content:
                    full_response += delta.content
                    yield full_response

            self.session_log.append({"role": "assistant", "content": full_response})

        self.save_session_log()

    def save_session_log(self):
        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        filename = f"chat_logs/session_{timestamp}.json"
        with open(filename, "w", encoding="utf-8") as f:
            json.dump(self.session_log, f, indent=2)

    def archive_logs(self):
        zip_path = "chat_logs/weekly_archive.zip"
        with zipfile.ZipFile(zip_path, "w", zipfile.ZIP_DEFLATED) as archive:
            for log_file in Path("chat_logs").glob("session_*.json"):
                archive.write(log_file, arcname=log_file.name)

me = Me()

with gr.Blocks(title="Jacob Isaacson Chatbot") as iface:
    with gr.Row():
        gr.Image("jacob.png", width=100, show_label=False)
        gr.Markdown("### Chat with Jacob Isaacson\nAsk about Jacob's background, skills, or career. \n🛡️ *All chats are logged for improvement purposes.*")

    gr.ChatInterface(
        fn=me.chat_stream,
        chatbot=gr.Chatbot(
            show_copy_button=True,
            value=[
                {"role": "assistant", "content": "Hello, my name is Jacob Isaacson. Please ask me any questions about my professional career and I will do my best to respond."}
            ],
            type="messages"
        ),
        type="messages",
        additional_inputs=[],
    )

if __name__ == "__main__":
    iface.launch()