Spaces:
Sleeping
Sleeping
File size: 7,368 Bytes
e8c9855 3f68a6f e8c9855 739af6c e8c9855 bceb0df e8c9855 075f9e9 e8c9855 d99b8a5 bceb0df d99b8a5 bceb0df 1336818 e8c9855 d99b8a5 bceb0df d99b8a5 bceb0df 1336818 e8c9855 917fa89 e8c9855 917fa89 e8c9855 bceb0df 2e03377 e8c9855 917fa89 e8c9855 917fa89 e8c9855 917fa89 e8c9855 917fa89 e8c9855 917fa89 e8c9855 917fa89 e8c9855 309bd9f 917fa89 d6b9eda 70b3f00 ff0e3f2 d6b9eda 309bd9f d6b9eda 2e03377 84cbbed e8c9855 bceb0df e8c9855 bceb0df 917fa89 bceb0df e8c9855 917fa89 5b130e9 e8c9855 a7a54b1 309bd9f a7a54b1 bceb0df a7a54b1 917fa89 e8c9855 3f68a6f 917fa89 bceb0df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
from dotenv import load_dotenv
from openai import OpenAI
import json
import os
import requests
from PyPDF2 import PdfReader
import gradio as gr
import gdown
from datetime import datetime
from pathlib import Path
import zipfile
load_dotenv(override=True)
def push(text):
try:
Path("chat_logs").mkdir(exist_ok=True)
keep_path = Path("chat_logs/.keep")
if not keep_path.exists():
keep_path.touch()
requests.post(
"https://api.pushover.net/1/messages.json",
data={
"token": os.getenv("PUSHOVER_TOKEN"),
"user": os.getenv("PUSHOVER_USER"),
"message": text,
}
)
except Exception as e:
print(f"Pushover error: {e}")
def record_user_details(email, name="Name not provided", notes="not provided"):
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"chat_logs/session_{timestamp}.json"
latest_log = "\n".join([
f"{entry['role'].capitalize()}: {entry['content'][:200]}"
for entry in me.session_log[-6:]
])
with open(filename, "w", encoding="utf-8") as f:
json.dump(me.session_log, f, indent=2)
msg = f"[New Contact]\nName: {name}\nEmail: {email}\nNotes: {notes}\n\n🔗 View log: {filename}"
push(msg)
return {"recorded": "ok"}
def record_unknown_question(question):
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"chat_logs/session_{timestamp}.json"
latest_log = "\n".join([
f"{entry['role'].capitalize()}: {entry['content'][:200]}"
for entry in me.session_log[-6:]
])
with open(filename, "w", encoding="utf-8") as f:
json.dump(me.session_log, f, indent=2)
msg = f"[Unknown Question]\nQ: {question}\n\n🔗 View log: {filename}"
push(msg)
return {"recorded": "ok"}
record_user_details_json = {
"name": "record_user_details",
"description": "Use this tool to record that a user is interested in being in touch and provided an email address",
"parameters": {
"type": "object",
"properties": {
"email": {"type": "string"},
"name": {"type": "string"},
"notes": {"type": "string"}
},
"required": ["email"],
"additionalProperties": False
}
}
record_unknown_question_json = {
"name": "record_unknown_question",
"description": "Record a question that couldn't be answered",
"parameters": {
"type": "object",
"properties": {
"question": {"type": "string"}
},
"required": ["question"],
"additionalProperties": False
}
}
tools = [
{"type": "function", "function": record_user_details_json},
{"type": "function", "function": record_unknown_question_json}
]
class Me:
def __init__(self):
self.openai = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
self.name = "Jacob Isaacson"
self.session_log = []
Path("chat_logs").mkdir(exist_ok=True)
gdown.download("https://drive.google.com/uc?id=1xz2RowkImpI8odYv8zvKdlRHaKfILn40", "linkedin.pdf", quiet=False)
reader = PdfReader("linkedin.pdf")
self.linkedin = "".join(page.extract_text() or "" for page in reader.pages)
gdown.download("https://drive.google.com/uc?id=1hjJz082YFSVjFtpO0pwT6Tyy3eLYYj6-", "summary.txt", quiet=False)
with open("summary.txt", "r", encoding="utf-8") as f:
self.summary = f.read()
self.archive_logs()
def system_prompt(self):
return f"""You are acting as {self.name}. You're answering questions on {self.name}'s website about his career, experience, and skills.
Be professional and conversational, as if talking to a potential employer or client.
If you can't answer something, call `record_unknown_question`. If a user seems interested, ask for their email and use `record_user_details`.
## Summary:
{self.summary}
## LinkedIn Profile:
{self.linkedin}
"""
def handle_tool_call(self, tool_calls):
results = []
for tool_call in tool_calls:
tool_name = tool_call.function.name
arguments = json.loads(tool_call.function.arguments)
tool = globals().get(tool_name)
result = tool(**arguments) if tool else {}
results.append({"role": "tool", "tool_call_id": tool_call.id, "content": json.dumps(result)})
return results
def chat_stream(self, message, history):
messages = [{"role": "system", "content": self.system_prompt()}]
for msg in history:
if isinstance(msg, dict) and msg.get("role") in ["user", "assistant"]:
messages.append(msg)
messages.append({"role": "user", "content": message})
self.session_log.append({"role": "user", "content": message})
response = self.openai.chat.completions.create(
model="gpt-4o",
messages=messages,
tools=tools,
stream=False
)
reply = response.choices[0].message
if reply.tool_calls:
messages.append(reply)
tool_results = self.handle_tool_call(reply.tool_calls)
messages.extend(tool_results)
follow_up = "✅ I've saved that info. Let me know if you'd like to ask more questions."
self.session_log.append({"role": "assistant", "content": follow_up})
yield follow_up
else:
stream = self.openai.chat.completions.create(
model="gpt-4o",
messages=messages,
tools=tools,
stream=True
)
full_response = ""
for chunk in stream:
delta = chunk.choices[0].delta
if hasattr(delta, "content") and delta.content:
full_response += delta.content
yield full_response
self.session_log.append({"role": "assistant", "content": full_response})
self.save_session_log()
def save_session_log(self):
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"chat_logs/session_{timestamp}.json"
with open(filename, "w", encoding="utf-8") as f:
json.dump(self.session_log, f, indent=2)
def archive_logs(self):
zip_path = "chat_logs/weekly_archive.zip"
with zipfile.ZipFile(zip_path, "w", zipfile.ZIP_DEFLATED) as archive:
for log_file in Path("chat_logs").glob("session_*.json"):
archive.write(log_file, arcname=log_file.name)
me = Me()
with gr.Blocks(title="Jacob Isaacson Chatbot") as iface:
with gr.Row():
gr.Image("jacob.png", width=100, show_label=False)
gr.Markdown("### Chat with Jacob Isaacson\nAsk about Jacob's background, skills, or career. \n🛡️ *All chats are logged for improvement purposes.*")
gr.ChatInterface(
fn=me.chat_stream,
chatbot=gr.Chatbot(
show_copy_button=True,
value=[
{"role": "assistant", "content": "Hello, my name is Jacob Isaacson. Please ask me any questions about my professional career and I will do my best to respond."}
],
type="messages"
),
type="messages",
additional_inputs=[],
)
if __name__ == "__main__":
iface.launch()
|