from dotenv import load_dotenv from openai import OpenAI import json import os import requests from PyPDF2 import PdfReader import gradio as gr import gdown from datetime import datetime from pathlib import Path import zipfile load_dotenv(override=True) def push(text): try: Path("chat_logs").mkdir(exist_ok=True) keep_path = Path("chat_logs/.keep") if not keep_path.exists(): keep_path.touch() requests.post( "https://api.pushover.net/1/messages.json", data={ "token": os.getenv("PUSHOVER_TOKEN"), "user": os.getenv("PUSHOVER_USER"), "message": text, } ) except Exception as e: print(f"Pushover error: {e}") def record_user_details(email, name="Name not provided", notes="not provided"): timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") filename = f"chat_logs/session_{timestamp}.json" latest_log = "\n".join([ f"{entry['role'].capitalize()}: {entry['content'][:200]}" for entry in me.session_log[-6:] ]) with open(filename, "w", encoding="utf-8") as f: json.dump(me.session_log, f, indent=2) msg = f"[New Contact]\nName: {name}\nEmail: {email}\nNotes: {notes}\n\nšŸ”— View log: {filename}" push(msg) return {"recorded": "ok"} def record_unknown_question(question): timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") filename = f"chat_logs/session_{timestamp}.json" latest_log = "\n".join([ f"{entry['role'].capitalize()}: {entry['content'][:200]}" for entry in me.session_log[-6:] ]) with open(filename, "w", encoding="utf-8") as f: json.dump(me.session_log, f, indent=2) msg = f"[Unknown Question]\nQ: {question}\n\nšŸ”— View log: {filename}" push(msg) return {"recorded": "ok"} record_user_details_json = { "name": "record_user_details", "description": "Use this tool to record that a user is interested in being in touch and provided an email address", "parameters": { "type": "object", "properties": { "email": {"type": "string"}, "name": {"type": "string"}, "notes": {"type": "string"} }, "required": ["email"], "additionalProperties": False } } record_unknown_question_json = { "name": "record_unknown_question", "description": "Record a question that couldn't be answered", "parameters": { "type": "object", "properties": { "question": {"type": "string"} }, "required": ["question"], "additionalProperties": False } } tools = [ {"type": "function", "function": record_user_details_json}, {"type": "function", "function": record_unknown_question_json} ] class Me: def __init__(self): self.openai = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) self.name = "Jacob Isaacson" self.session_log = [] Path("chat_logs").mkdir(exist_ok=True) gdown.download("https://drive.google.com/uc?id=1xz2RowkImpI8odYv8zvKdlRHaKfILn40", "linkedin.pdf", quiet=False) reader = PdfReader("linkedin.pdf") self.linkedin = "".join(page.extract_text() or "" for page in reader.pages) gdown.download("https://drive.google.com/uc?id=1hjJz082YFSVjFtpO0pwT6Tyy3eLYYj6-", "summary.txt", quiet=False) with open("summary.txt", "r", encoding="utf-8") as f: self.summary = f.read() self.archive_logs() def system_prompt(self): return f"""You are acting as {self.name}. You're answering questions on {self.name}'s website about his career, experience, and skills. Be professional and conversational, as if talking to a potential employer or client. If you can't answer something, call `record_unknown_question`. If a user seems interested, ask for their email and use `record_user_details`. ## Summary: {self.summary} ## LinkedIn Profile: {self.linkedin} """ def handle_tool_call(self, tool_calls): results = [] for tool_call in tool_calls: tool_name = tool_call.function.name arguments = json.loads(tool_call.function.arguments) tool = globals().get(tool_name) result = tool(**arguments) if tool else {} results.append({"role": "tool", "tool_call_id": tool_call.id, "content": json.dumps(result)}) return results def chat_stream(self, message, history): messages = [{"role": "system", "content": self.system_prompt()}] for msg in history: if isinstance(msg, dict) and msg.get("role") in ["user", "assistant"]: messages.append(msg) messages.append({"role": "user", "content": message}) self.session_log.append({"role": "user", "content": message}) response = self.openai.chat.completions.create( model="gpt-4o", messages=messages, tools=tools, stream=False ) reply = response.choices[0].message if reply.tool_calls: messages.append(reply) tool_results = self.handle_tool_call(reply.tool_calls) messages.extend(tool_results) follow_up = "āœ… I've saved that info. Let me know if you'd like to ask more questions." self.session_log.append({"role": "assistant", "content": follow_up}) yield follow_up else: stream = self.openai.chat.completions.create( model="gpt-4o", messages=messages, tools=tools, stream=True ) full_response = "" for chunk in stream: delta = chunk.choices[0].delta if hasattr(delta, "content") and delta.content: full_response += delta.content yield full_response self.session_log.append({"role": "assistant", "content": full_response}) self.save_session_log() def save_session_log(self): timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") filename = f"chat_logs/session_{timestamp}.json" with open(filename, "w", encoding="utf-8") as f: json.dump(self.session_log, f, indent=2) def archive_logs(self): zip_path = "chat_logs/weekly_archive.zip" with zipfile.ZipFile(zip_path, "w", zipfile.ZIP_DEFLATED) as archive: for log_file in Path("chat_logs").glob("session_*.json"): archive.write(log_file, arcname=log_file.name) me = Me() with gr.Blocks(title="Jacob Isaacson Chatbot") as iface: with gr.Row(): gr.Image("jacob.png", width=100, show_label=False) gr.Markdown("### Chat with Jacob Isaacson\nAsk about Jacob's background, skills, or career. \nšŸ›”ļø *All chats are logged for improvement purposes.*") gr.ChatInterface( fn=me.chat_stream, chatbot=gr.Chatbot( show_copy_button=True, value=[ {"role": "assistant", "content": "Hello, my name is Jacob Isaacson. Please ask me any questions about my professional career and I will do my best to respond."} ], type="messages" ), type="messages", additional_inputs=[], ) if __name__ == "__main__": iface.launch()