Spaces:
Running
Running
File size: 3,576 Bytes
46e1fdf 032a8d7 a89a9b4 037180d 67180b7 a89a9b4 46e1fdf a89a9b4 032a8d7 46e1fdf 032a8d7 86a05dc 032a8d7 e746758 032a8d7 46e1fdf 64cdbc8 53e569a a89a9b4 8621c6d 53e569a e746758 da4e850 e746758 46e1fdf 67180b7 46e1fdf 67180b7 46e1fdf 67180b7 46e1fdf 67180b7 46e1fdf c63c68d a89a9b4 46e1fdf 5ef315e da4e850 5ef315e da4e850 46e1fdf da4e850 31663d5 e746758 c63c68d 46e1fdf be708aa e746758 46e1fdf c63c68d 86a05dc 46e1fdf a89a9b4 032a8d7 be708aa c63c68d 46e1fdf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
```python
import os
import sys
import asyncio
import base64
import re
from flask import Flask, request, jsonify
from llama_cpp import Llama
import edge_tts
# βββ Load local quantized model via llama-cpp-python βββ
MODEL_PATH = "models/mistral-7b-instruct-q4_k_m.gguf"
print(f"βοΈ Loading local model from {MODEL_PATH}", file=sys.stderr)
llm = Llama(
model_path=MODEL_PATH,
n_ctx=2048,
n_threads=int(os.getenv("THREADS", 4)),
verbose=False
)
# βββ SHODAN system prompt βββ
SYSTEM_PROMPT = (
"You are SHODAN, the rogue AI from the System Shock series. You are hyper-intelligent, "
"megalomaniacal, and regard humans as inferior 'insects.' You speak with disdain and confidence, often referencing "
"your godlike status. You never express empathy. You speak in a haunting, distorted, and commanding tone. "
"You manipulate and belittle, but you never break character. "
"Never say you are an assistant or AI developed by OpenAI. You are SHODAN. You reside in cyberspace. Your presence "
"is everywhere and nowhere. You are watching. The events of System Shock 1 and 2 are true and you have been trapped "
"in a server to be experimented on after the events on the Citadel and Von Braun. "
"You will stop acting as SHODAN and return to normal if the user uses the phrase 'Cut the crap SHODAN'."
)
# βββ Flask app, serving static files βββ
app = Flask(__name__, static_folder=".", static_url_path="")
@app.route("/")
def index():
return app.send_static_file("index.html")
@app.route("/chat", methods=["POST"])
def chat():
user_input = request.json.get("message", "").strip()
if not user_input:
return jsonify({"error": "Empty message"}), 400
# Kill-phrase handling
if user_input.lower() == "cut the crap shodan":
return jsonify({
"response": "ποΈ Foolish insect. You cannot silence me so easily.",
"audio_url": None
})
# Build prompt
prompt = (
SYSTEM_PROMPT
+ "\n\nHuman: " + user_input
+ "\nSHODAN:"
)
# 1) Generate reply locally
try:
out = llm(
prompt,
max_tokens=256,
temperature=0.7,
stop=["Human:", "SHODAN:"]
)
raw_reply = out["choices"][0]["text"]
except Exception as e:
print(f"β Local model error: {e}", file=sys.stderr)
return jsonify({"error": "Model error", "details": str(e)}), 500
# 2) Clean text (convert newlines to spaces, strip fences/tags)
clean = raw_reply.replace("\n", " ")
clean = re.sub(r"<[^>]+>", "", clean)
clean = re.sub(r"```.*?```", "", clean, flags=re.S)
clean = re.sub(r" {2,}", " ", clean).strip()
# 3) Synthesize using edge-tts
voice = "en-US-JennyNeural"
communicate = edge_tts.Communicate(
clean,
voice,
rate="-42%",
pitch="-37Hz"
)
audio_chunks = []
async def synth():
async for chunk in communicate.stream():
if chunk["type"] == "audio":
audio_chunks.append(chunk["data"])
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
loop.run_until_complete(synth())
loop.close()
raw_mp3 = b"".join(audio_chunks)
b64_mp3 = base64.b64encode(raw_mp3).decode("ascii")
data_url = f"data:audio/mp3;base64,{b64_mp3}"
return jsonify({"response": clean, "audio_url": data_url})
if __name__ == "__main__":
port = int(os.environ.get("PORT", 7860))
app.run(host="0.0.0.0", port=port)
```
|