Spaces:
Sleeping
Sleeping
Upload 7 files
Browse files- app.py +107 -0
- image4996.jpg +0 -0
- image4997.jpg +0 -0
- image4998.jpg +0 -0
- image4999.jpg +0 -0
- model.py +108 -0
- requirements.txt +8 -0
app.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
from model import BoundingBoxPredictor
|
6 |
+
import matplotlib.patches as patches
|
7 |
+
import os
|
8 |
+
import uuid
|
9 |
+
|
10 |
+
predictor = BoundingBoxPredictor()
|
11 |
+
|
12 |
+
current_dir = os.path.dirname(os.path.abspath(__file__))
|
13 |
+
cnn_path = os.path.join(current_dir, 'convolutional_nn.h5')
|
14 |
+
knn_path = os.path.join(current_dir, 'knn_model_tuned.pkl')
|
15 |
+
|
16 |
+
sample_images = [
|
17 |
+
os.path.join(current_dir, f"image{i}.jpg")
|
18 |
+
for i in range(4996, 5000)
|
19 |
+
]
|
20 |
+
|
21 |
+
try:
|
22 |
+
predictor.load_models(cnn_path, knn_path)
|
23 |
+
print("Models loaded successfully!")
|
24 |
+
except Exception as e:
|
25 |
+
print(f"Error loading models: {str(e)}")
|
26 |
+
raise
|
27 |
+
|
28 |
+
def predict_and_draw_bbox(input_image, model_choice):
|
29 |
+
if input_image is None:
|
30 |
+
return None, "Please upload an image."
|
31 |
+
|
32 |
+
try:
|
33 |
+
bbox = predictor.predict(input_image, model_type=model_choice.lower())
|
34 |
+
|
35 |
+
img_array = np.array(input_image)
|
36 |
+
|
37 |
+
fig, ax = plt.subplots()
|
38 |
+
ax.imshow(img_array, cmap='gray')
|
39 |
+
|
40 |
+
rect = patches.Rectangle(
|
41 |
+
(bbox['x'], bbox['y']),
|
42 |
+
bbox['width'],
|
43 |
+
bbox['height'],
|
44 |
+
linewidth=2,
|
45 |
+
edgecolor='r',
|
46 |
+
facecolor='none'
|
47 |
+
)
|
48 |
+
ax.add_patch(rect)
|
49 |
+
|
50 |
+
plt.axis('off')
|
51 |
+
|
52 |
+
output_filename = f'output_{uuid.uuid4().hex[:8]}.png'
|
53 |
+
output_path = os.path.join(current_dir, output_filename)
|
54 |
+
|
55 |
+
plt.savefig(output_path, bbox_inches='tight', pad_inches=0)
|
56 |
+
plt.close()
|
57 |
+
|
58 |
+
return (
|
59 |
+
output_path,
|
60 |
+
f"Model Used: {model_choice}\n\nBounding Box Coordinates:\nX: {bbox['x']:.2f}\nY: {bbox['y']:.2f}\nWidth: {bbox['width']:.2f}\nHeight: {bbox['height']:.2f}"
|
61 |
+
)
|
62 |
+
except Exception as e:
|
63 |
+
return None, f"Error processing image: {str(e)}"
|
64 |
+
|
65 |
+
def select_sample(evt: gr.SelectData):
|
66 |
+
selected_image = Image.open(sample_images[evt.index])
|
67 |
+
return selected_image
|
68 |
+
|
69 |
+
with gr.Blocks() as iface:
|
70 |
+
gr.Markdown("# Bounding Box Detector")
|
71 |
+
gr.Markdown("""Upload an image to detect the bounding box. Choose between:
|
72 |
+
- CNN Model (Best performance, IoU: 0.65)
|
73 |
+
- KNN Model (Faster, IoU: 0.47)
|
74 |
+
|
75 |
+
The models work best with grayscale images of size 128x128.""")
|
76 |
+
|
77 |
+
with gr.Row():
|
78 |
+
with gr.Column():
|
79 |
+
input_image = gr.Image(type="pil", label="Input Image")
|
80 |
+
model_choice = gr.Radio(
|
81 |
+
choices=["CNN", "KNN"],
|
82 |
+
label="Choose Model",
|
83 |
+
value="CNN"
|
84 |
+
)
|
85 |
+
submit_btn = gr.Button("Detect Bounding Box")
|
86 |
+
|
87 |
+
with gr.Column():
|
88 |
+
output_image = gr.Image(type="filepath", label="Detected Bounding Box")
|
89 |
+
output_text = gr.Textbox(label="Coordinates")
|
90 |
+
|
91 |
+
gr.Markdown("### Sample Images (click to use)")
|
92 |
+
gallery = gr.Gallery(
|
93 |
+
value=sample_images,
|
94 |
+
label="Sample Images",
|
95 |
+
show_label=False,
|
96 |
+
columns=4,
|
97 |
+
height="auto"
|
98 |
+
).select(select_sample, None, input_image)
|
99 |
+
|
100 |
+
submit_btn.click(
|
101 |
+
predict_and_draw_bbox,
|
102 |
+
inputs=[input_image, model_choice],
|
103 |
+
outputs=[output_image, output_text]
|
104 |
+
)
|
105 |
+
|
106 |
+
if __name__ == "__main__":
|
107 |
+
iface.launch()
|
image4996.jpg
ADDED
![]() |
image4997.jpg
ADDED
![]() |
image4998.jpg
ADDED
![]() |
image4999.jpg
ADDED
![]() |
model.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
import joblib
|
5 |
+
import os
|
6 |
+
from tensorflow.keras.models import Sequential
|
7 |
+
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten
|
8 |
+
|
9 |
+
class BoundingBoxPredictor:
|
10 |
+
def __init__(self):
|
11 |
+
self.cnn_model = None
|
12 |
+
self.knn_model = None
|
13 |
+
self.input_shape = (128, 128)
|
14 |
+
# Updated normalization values based on actual dataset analysis
|
15 |
+
self.y_min = np.array([0., 0., 30., 30.]) # min values for x, y, width, height
|
16 |
+
self.y_max = np.array([97., 97., 49., 49.]) # max values for x, y, width, height
|
17 |
+
|
18 |
+
def create_cnn_model(self):
|
19 |
+
model = Sequential([
|
20 |
+
Conv2D(32, (3, 3), activation='relu', input_shape=(*self.input_shape, 1)),
|
21 |
+
MaxPooling2D((2, 2)),
|
22 |
+
Conv2D(64, (3, 3), activation='relu'),
|
23 |
+
MaxPooling2D((2, 2)),
|
24 |
+
Flatten(),
|
25 |
+
Dense(128, activation='relu'),
|
26 |
+
Dense(4, activation='sigmoid')
|
27 |
+
])
|
28 |
+
model.compile(optimizer='adam', loss='mse', metrics=['mse'])
|
29 |
+
return model
|
30 |
+
|
31 |
+
def load_models(self, cnn_path, knn_path):
|
32 |
+
# Check if files exist
|
33 |
+
if not os.path.exists(cnn_path):
|
34 |
+
raise FileNotFoundError(f"CNN model file not found: {cnn_path}")
|
35 |
+
if not os.path.exists(knn_path):
|
36 |
+
raise FileNotFoundError(f"KNN model file not found: {knn_path}")
|
37 |
+
|
38 |
+
print(f"Loading CNN model from: {cnn_path}")
|
39 |
+
try:
|
40 |
+
self.cnn_model = tf.keras.models.load_model(cnn_path)
|
41 |
+
except Exception as e:
|
42 |
+
print(f"Error loading CNN model: {str(e)}")
|
43 |
+
print("Creating new CNN model...")
|
44 |
+
self.cnn_model = self.create_cnn_model()
|
45 |
+
try:
|
46 |
+
self.cnn_model.load_weights(cnn_path)
|
47 |
+
print("Successfully loaded CNN weights")
|
48 |
+
except:
|
49 |
+
print("Could not load CNN weights, using uninitialized model")
|
50 |
+
|
51 |
+
print("CNN model ready")
|
52 |
+
|
53 |
+
print(f"Loading KNN model from: {knn_path}")
|
54 |
+
self.knn_model = joblib.load(knn_path)
|
55 |
+
print("KNN model loaded successfully")
|
56 |
+
|
57 |
+
def preprocess_image(self, image):
|
58 |
+
# Convert to grayscale if needed
|
59 |
+
if image.mode != 'L':
|
60 |
+
image = image.convert('L')
|
61 |
+
|
62 |
+
# Resize image
|
63 |
+
image = image.resize(self.input_shape)
|
64 |
+
|
65 |
+
# Convert to numpy array and normalize
|
66 |
+
img_array = np.array(image)
|
67 |
+
img_array = img_array / 255.0
|
68 |
+
|
69 |
+
return img_array
|
70 |
+
|
71 |
+
def predict(self, image, model_type='cnn'):
|
72 |
+
# Check if models are loaded
|
73 |
+
if model_type == 'cnn' and self.cnn_model is None:
|
74 |
+
raise ValueError("CNN model not loaded. Please call load_models first.")
|
75 |
+
if model_type == 'knn' and self.knn_model is None:
|
76 |
+
raise ValueError("KNN model not loaded. Please call load_models first.")
|
77 |
+
|
78 |
+
# Preprocess the image
|
79 |
+
processed_image = self.preprocess_image(image)
|
80 |
+
|
81 |
+
try:
|
82 |
+
if model_type == 'cnn':
|
83 |
+
# Reshape for CNN input
|
84 |
+
img_array = processed_image.reshape(1, *self.input_shape, 1)
|
85 |
+
# Get normalized predictions (between 0 and 1)
|
86 |
+
prediction = self.cnn_model.predict(img_array)[0]
|
87 |
+
# Denormalize predictions to original scale
|
88 |
+
prediction = prediction * (self.y_max - self.y_min) + self.y_min
|
89 |
+
else: # KNN
|
90 |
+
# Flatten for KNN input
|
91 |
+
img_array = processed_image.flatten().reshape(1, -1)
|
92 |
+
# Get normalized predictions
|
93 |
+
prediction = self.knn_model.predict(img_array)[0]
|
94 |
+
# Denormalize predictions to original scale
|
95 |
+
prediction = prediction * (self.y_max - self.y_min) + self.y_min
|
96 |
+
|
97 |
+
# Ensure predictions are within valid ranges
|
98 |
+
prediction = np.clip(prediction, self.y_min, self.y_max)
|
99 |
+
|
100 |
+
return {
|
101 |
+
'x': float(prediction[0]),
|
102 |
+
'y': float(prediction[1]),
|
103 |
+
'width': float(prediction[2]),
|
104 |
+
'height': float(prediction[3])
|
105 |
+
}
|
106 |
+
except Exception as e:
|
107 |
+
print(f"Error during prediction with {model_type.upper()} model: {str(e)}")
|
108 |
+
raise
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
tensorflow>=2.0.0
|
2 |
+
numpy
|
3 |
+
Pillow
|
4 |
+
gradio>=4.0.0
|
5 |
+
matplotlib
|
6 |
+
scikit-learn
|
7 |
+
joblib
|
8 |
+
huggingface-hub
|