Spaces:
Sleeping
Sleeping
Add app, models, requirements, and test images
Browse files- app.py +483 -0
- models/model.pth +3 -0
- models/model_info.json +6 -0
- requirements.txt +6 -0
- test_images/healthy/0a31e630-0d98-416b-b0e4-88a88aad1dc5___RS_HL 9653.JPG +0 -0
- test_images/healthy/0a9986e6-b629-4ff5-8aab-7488ea9b935b___RS_HL 9704.JPG +0 -0
- test_images/healthy/0aacdad5-c9b9-4309-96e3-0797bbed1375___RS_HL 9836.JPG +0 -0
- test_images/spider_mite/0a1c03ea-1a2d-449e-bcc4-4a8b62febf88___Com.G_SpM_FL 9433.JPG +0 -0
- test_images/spider_mite/0cc75e2e-9e6f-4b8e-b564-3840c9ecff58___Com.G_SpM_FL 1442.JPG +0 -0
- test_images/spider_mite/0cee18fc-bbbd-40dd-8d73-93df072c09ea___Com.G_SpM_FL 8904.JPG +0 -0
app.py
ADDED
@@ -0,0 +1,483 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from torchvision import models, transforms
|
5 |
+
from PIL import Image
|
6 |
+
import numpy as np
|
7 |
+
import time
|
8 |
+
import os
|
9 |
+
import json
|
10 |
+
|
11 |
+
# Set page configuration
|
12 |
+
st.set_page_config(
|
13 |
+
page_title="Spider Mite Detection",
|
14 |
+
page_icon="π",
|
15 |
+
layout="wide",
|
16 |
+
initial_sidebar_state="expanded",
|
17 |
+
menu_items={
|
18 |
+
'Get Help': 'https://www.github.com/your-repo',
|
19 |
+
'Report a bug': 'https://www.github.com/your-repo/issues',
|
20 |
+
'About': 'Advanced AI system for detecting spider mite infestations on plant leaves'
|
21 |
+
}
|
22 |
+
)
|
23 |
+
|
24 |
+
# Define model architectures
|
25 |
+
MODEL_MAP = {
|
26 |
+
'mobilenetv3': {
|
27 |
+
'model_fn': models.mobilenet_v3_small,
|
28 |
+
'classifier_update': lambda model, num_classes: setattr(
|
29 |
+
model, 'classifier', nn.Sequential(
|
30 |
+
*list(model.classifier.children())[:-1],
|
31 |
+
nn.Linear(model.classifier[-1].in_features, num_classes)
|
32 |
+
)
|
33 |
+
)
|
34 |
+
},
|
35 |
+
'efficientnet': {
|
36 |
+
'model_fn': models.efficientnet_b0,
|
37 |
+
'classifier_update': lambda model, num_classes: setattr(
|
38 |
+
model, 'classifier', nn.Sequential(
|
39 |
+
*list(model.classifier.children())[:-1],
|
40 |
+
nn.Linear(model.classifier[-1].in_features, num_classes)
|
41 |
+
)
|
42 |
+
)
|
43 |
+
},
|
44 |
+
'resnet18': {
|
45 |
+
'model_fn': models.resnet18,
|
46 |
+
'classifier_update': lambda model, num_classes: setattr(
|
47 |
+
model, 'fc', nn.Linear(model.fc.in_features, num_classes)
|
48 |
+
)
|
49 |
+
}
|
50 |
+
}
|
51 |
+
|
52 |
+
# Define image transformation
|
53 |
+
def get_transform():
|
54 |
+
return transforms.Compose([
|
55 |
+
transforms.Resize((224, 224)),
|
56 |
+
transforms.ToTensor(),
|
57 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
58 |
+
])
|
59 |
+
|
60 |
+
# Define function to load model
|
61 |
+
@st.cache_resource
|
62 |
+
def load_model(model_path="models/model.pth"):
|
63 |
+
# Try to find model_info.json to determine which model architecture to use
|
64 |
+
model_dir = os.path.dirname(model_path)
|
65 |
+
model_info_path = os.path.join(model_dir, "model_info.json")
|
66 |
+
|
67 |
+
# Default model type if info file doesn't exist
|
68 |
+
model_type = "mobilenetv3"
|
69 |
+
|
70 |
+
if os.path.exists(model_info_path):
|
71 |
+
try:
|
72 |
+
with open(model_info_path, 'r') as f:
|
73 |
+
model_info = json.load(f)
|
74 |
+
model_type = model_info.get('model_name', model_type)
|
75 |
+
except:
|
76 |
+
st.warning("Couldn't read model info file. Using default model type.")
|
77 |
+
|
78 |
+
# Initialize the model
|
79 |
+
if model_type not in MODEL_MAP:
|
80 |
+
st.error(f"Unknown model type: {model_type}")
|
81 |
+
return None
|
82 |
+
|
83 |
+
model = MODEL_MAP[model_type]['model_fn'](weights=None)
|
84 |
+
MODEL_MAP[model_type]['classifier_update'](model, 2) # 2 classes: healthy, infested
|
85 |
+
|
86 |
+
# Load weights
|
87 |
+
if os.path.exists(model_path):
|
88 |
+
try:
|
89 |
+
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
|
90 |
+
model.eval()
|
91 |
+
return model
|
92 |
+
except Exception as e:
|
93 |
+
st.error(f"Error loading model: {e}")
|
94 |
+
return None
|
95 |
+
else:
|
96 |
+
st.error(f"Model file not found: {model_path}")
|
97 |
+
return None
|
98 |
+
|
99 |
+
# Predict function
|
100 |
+
def predict(model, image):
|
101 |
+
transform = get_transform()
|
102 |
+
image_tensor = transform(image).unsqueeze(0) # Add batch dimension
|
103 |
+
|
104 |
+
# Make prediction
|
105 |
+
with torch.no_grad():
|
106 |
+
start_time = time.time()
|
107 |
+
outputs = model(image_tensor)
|
108 |
+
inference_time = time.time() - start_time
|
109 |
+
|
110 |
+
# Get probabilities
|
111 |
+
probabilities = torch.nn.functional.softmax(outputs[0], dim=0)
|
112 |
+
|
113 |
+
return probabilities.numpy(), inference_time
|
114 |
+
|
115 |
+
# Main app UI
|
116 |
+
def main():
|
117 |
+
# Custom CSS
|
118 |
+
st.markdown("""
|
119 |
+
<style>
|
120 |
+
.main-header {
|
121 |
+
font-size: 3rem;
|
122 |
+
background: linear-gradient(90deg, #4CAF50, #2196F3);
|
123 |
+
-webkit-background-clip: text;
|
124 |
+
background-clip: text;
|
125 |
+
color: transparent;
|
126 |
+
text-align: center;
|
127 |
+
margin-bottom: 2rem;
|
128 |
+
padding: 20px 0;
|
129 |
+
font-weight: 800;
|
130 |
+
letter-spacing: 1px;
|
131 |
+
text-shadow: 0px 2px 4px rgba(0,0,0,0.1);
|
132 |
+
}
|
133 |
+
.sub-header {
|
134 |
+
font-size: 1.8rem;
|
135 |
+
color: #1E88E5;
|
136 |
+
margin-bottom: 1.5rem;
|
137 |
+
border-bottom: 2px solid #E0E0E0;
|
138 |
+
padding-bottom: 10px;
|
139 |
+
}
|
140 |
+
.result-header {
|
141 |
+
font-size: 2rem;
|
142 |
+
font-weight: bold;
|
143 |
+
margin-bottom: 1.5rem;
|
144 |
+
color: #333;
|
145 |
+
}
|
146 |
+
.healthy {
|
147 |
+
color: #2E7D32;
|
148 |
+
font-weight: bold;
|
149 |
+
font-size: 1.5rem;
|
150 |
+
display: flex;
|
151 |
+
align-items: center;
|
152 |
+
background-color: rgba(46, 125, 50, 0.1);
|
153 |
+
padding: 10px 15px;
|
154 |
+
border-radius: 8px;
|
155 |
+
}
|
156 |
+
.infested {
|
157 |
+
color: #C62828;
|
158 |
+
font-weight: bold;
|
159 |
+
font-size: 1.5rem;
|
160 |
+
display: flex;
|
161 |
+
align-items: center;
|
162 |
+
background-color: rgba(198, 40, 40, 0.1);
|
163 |
+
padding: 10px 15px;
|
164 |
+
border-radius: 8px;
|
165 |
+
}
|
166 |
+
.sidebar-content {
|
167 |
+
font-size: 1.1rem;
|
168 |
+
padding: 15px 0;
|
169 |
+
}
|
170 |
+
.sidebar-title {
|
171 |
+
background: linear-gradient(90deg, #4CAF50, #2196F3);
|
172 |
+
-webkit-background-clip: text;
|
173 |
+
background-clip: text;
|
174 |
+
color: transparent;
|
175 |
+
font-weight: 700;
|
176 |
+
margin-bottom: 15px;
|
177 |
+
}
|
178 |
+
.stProgress > div > div {
|
179 |
+
background-color: #4CAF50;
|
180 |
+
}
|
181 |
+
div[data-testid="stFileUploadDropzone"] {
|
182 |
+
border: 2px dashed #4CAF50;
|
183 |
+
border-radius: 8px;
|
184 |
+
padding: 30px 20px;
|
185 |
+
background-color: rgba(76, 175, 80, 0.05);
|
186 |
+
margin-bottom: 25px;
|
187 |
+
transition: all 0.3s ease;
|
188 |
+
}
|
189 |
+
div[data-testid="stFileUploadDropzone"]:hover {
|
190 |
+
background-color: rgba(76, 175, 80, 0.1);
|
191 |
+
border-color: #2E7D32;
|
192 |
+
}
|
193 |
+
.stButton>button {
|
194 |
+
background-color: #2196F3;
|
195 |
+
color: white;
|
196 |
+
border-radius: 5px;
|
197 |
+
border: none;
|
198 |
+
padding: 10px 20px;
|
199 |
+
font-weight: 600;
|
200 |
+
transition: all 0.3s ease;
|
201 |
+
}
|
202 |
+
.stButton>button:hover {
|
203 |
+
background-color: #1976D2;
|
204 |
+
transform: translateY(-2px);
|
205 |
+
box-shadow: 0 5px 15px rgba(0,0,0,0.1);
|
206 |
+
}
|
207 |
+
.info-box {
|
208 |
+
background-color: #E3F2FD;
|
209 |
+
border-left: 5px solid #2196F3;
|
210 |
+
padding: 15px;
|
211 |
+
border-radius: 5px;
|
212 |
+
margin-bottom: 20px;
|
213 |
+
}
|
214 |
+
.metrics-container {
|
215 |
+
display: grid;
|
216 |
+
grid-template-columns: 1fr 1fr;
|
217 |
+
gap: 15px;
|
218 |
+
margin-bottom: 20px;
|
219 |
+
}
|
220 |
+
.metric-card {
|
221 |
+
background-color: #f8f9fa;
|
222 |
+
border-radius: 8px;
|
223 |
+
padding: 15px;
|
224 |
+
box-shadow: 0 2px 5px rgba(0,0,0,0.1);
|
225 |
+
}
|
226 |
+
.metric-value {
|
227 |
+
font-size: 1.8rem;
|
228 |
+
font-weight: bold;
|
229 |
+
color: #1976D2;
|
230 |
+
}
|
231 |
+
.metric-label {
|
232 |
+
color: #5f6368;
|
233 |
+
font-size: 0.9rem;
|
234 |
+
margin-top: 5px;
|
235 |
+
}
|
236 |
+
</style>
|
237 |
+
""", unsafe_allow_html=True)
|
238 |
+
|
239 |
+
# Sidebar information
|
240 |
+
st.sidebar.markdown('<div class="sidebar-content">', unsafe_allow_html=True)
|
241 |
+
st.sidebar.image("https://www.gardeningknowhow.com/wp-content/uploads/2019/08/spider-mite-1.jpg", width=280)
|
242 |
+
st.sidebar.markdown('<h2 class="sidebar-title">About This Tool</h2>', unsafe_allow_html=True)
|
243 |
+
st.sidebar.markdown("""
|
244 |
+
<div class="info-box">
|
245 |
+
This application uses deep learning to detect spider mite infestations on plant leaves with high accuracy.
|
246 |
+
</div>
|
247 |
+
|
248 |
+
### What are Spider Mites?
|
249 |
+
- Tiny arachnids (0.5mm) that damage crops
|
250 |
+
- Feed on plant tissues, causing yellowing and spotting
|
251 |
+
- Can rapidly reproduce and spread throughout plants
|
252 |
+
- Often go unnoticed until significant damage occurs
|
253 |
+
|
254 |
+
### How to Use This Tool
|
255 |
+
1. Upload a high-quality image of a plant leaf
|
256 |
+
2. Our AI will analyze the image for infestation signs
|
257 |
+
3. Review the detection results and follow recommendations
|
258 |
+
|
259 |
+
### Model Information
|
260 |
+
- Technology: Deep Learning with Transfer Learning
|
261 |
+
- Architecture: MobileNetV3
|
262 |
+
- Accuracy: ~95%+ on validation data
|
263 |
+
- Training: Custom dataset of healthy and infested leaves
|
264 |
+
""", unsafe_allow_html=True)
|
265 |
+
st.sidebar.markdown('</div>', unsafe_allow_html=True)
|
266 |
+
|
267 |
+
# Main area
|
268 |
+
st.markdown('<h1 class="main-header">Spider Mite Detection System</h1>', unsafe_allow_html=True)
|
269 |
+
|
270 |
+
# Tabs for different functionalities
|
271 |
+
tab1, tab2 = st.tabs(["π Detect Spider Mites", "βΉοΈ About the Project"])
|
272 |
+
|
273 |
+
with tab1:
|
274 |
+
col1, col2, col3 = st.columns([1, 2, 1])
|
275 |
+
with col2:
|
276 |
+
st.markdown('<h2 class="sub-header">Upload a leaf image for analysis</h2>', unsafe_allow_html=True)
|
277 |
+
|
278 |
+
# Load model
|
279 |
+
with st.spinner("Loading AI model..."):
|
280 |
+
model = load_model()
|
281 |
+
|
282 |
+
if model is None:
|
283 |
+
st.error("β οΈ Failed to load model. Please check if the model file exists.")
|
284 |
+
return
|
285 |
+
else:
|
286 |
+
st.success("β
AI model loaded successfully")
|
287 |
+
|
288 |
+
# Image upload with enhanced UI
|
289 |
+
upload_container = st.container()
|
290 |
+
with upload_container:
|
291 |
+
uploaded_file = st.file_uploader("Choose a leaf image to analyze", type=["jpg", "jpeg", "png"])
|
292 |
+
|
293 |
+
# Add example images
|
294 |
+
st.markdown("<h3>Or try an example:</h3>", unsafe_allow_html=True)
|
295 |
+
example_cols = st.columns(4)
|
296 |
+
|
297 |
+
# Example images from URLs
|
298 |
+
example_images = [
|
299 |
+
{"name": "Healthy Leaf", "path": "https://www.gardendesign.com/pictures/images/900x705Max/site_3/helianthus-yellow-flower-pixabay_12708.jpg"},
|
300 |
+
{"name": "Mild Infestation", "path": "https://extension.umn.edu/sites/extension.umn.edu/files/styles/caption_medium/public/two-spotted-spider-mite-feeding-damage-JWeiland-iStock.jpg?itok=VLzrPzLc"},
|
301 |
+
{"name": "Severe Infestation", "path": "https://www.planetnatural.com/wp-content/uploads/2012/12/spider-mite-damage-1.jpg"},
|
302 |
+
{"name": "Spider Mite Closeup", "path": "https://bugguide.net/images/raw/ZR0/ZXR/ZR0ZXRCZMLJLUL1LJLQZ5RRR9RHH5RQZIRFZIRCZKRQZ5RNLKRFZ5RULARCZIRGZIZ9RTLSZPR.jpg"},
|
303 |
+
]
|
304 |
+
|
305 |
+
use_example = None
|
306 |
+
for i, example in enumerate(example_images):
|
307 |
+
with example_cols[i]:
|
308 |
+
st.image(example["path"], caption=example["name"], width=150)
|
309 |
+
if st.button(f"Use Example {i+1}", key=f"example_{i}"):
|
310 |
+
use_example = example["path"]
|
311 |
+
|
312 |
+
# Process image
|
313 |
+
if uploaded_file is not None or use_example is not None:
|
314 |
+
# Handle example image
|
315 |
+
if use_example is not None:
|
316 |
+
try:
|
317 |
+
import requests
|
318 |
+
from io import BytesIO
|
319 |
+
response = requests.get(use_example)
|
320 |
+
image = Image.open(BytesIO(response.content)).convert('RGB')
|
321 |
+
except Exception as e:
|
322 |
+
st.error(f"Error loading example image: {e}")
|
323 |
+
return
|
324 |
+
else:
|
325 |
+
# User uploaded image
|
326 |
+
image = Image.open(uploaded_file).convert('RGB')
|
327 |
+
|
328 |
+
st.markdown("---")
|
329 |
+
|
330 |
+
analysis_container = st.container()
|
331 |
+
with analysis_container:
|
332 |
+
col1, col2 = st.columns([1, 1])
|
333 |
+
|
334 |
+
with col1:
|
335 |
+
st.markdown('<h3 class="sub-header">Uploaded Image</h3>', unsafe_allow_html=True)
|
336 |
+
st.image(image, caption="", use_container_width=True)
|
337 |
+
|
338 |
+
with col2:
|
339 |
+
st.markdown('<h3 class="result-header">Analysis Result</h3>', unsafe_allow_html=True)
|
340 |
+
|
341 |
+
# Run prediction
|
342 |
+
with st.spinner("π Analyzing leaf image..."):
|
343 |
+
probabilities, inference_time = predict(model, image)
|
344 |
+
|
345 |
+
# Class names
|
346 |
+
class_names = ['Healthy', 'Spider Mite Infested']
|
347 |
+
|
348 |
+
# Get prediction
|
349 |
+
predicted_class = np.argmax(probabilities)
|
350 |
+
confidence = probabilities[predicted_class] * 100
|
351 |
+
|
352 |
+
# Display result with improved UI
|
353 |
+
if predicted_class == 0:
|
354 |
+
st.markdown(f'<div class="healthy">β
{class_names[predicted_class]}</div>', unsafe_allow_html=True)
|
355 |
+
emoji = "πΏ"
|
356 |
+
result_color = "#2E7D32"
|
357 |
+
else:
|
358 |
+
st.markdown(f'<div class="infested">β οΈ {class_names[predicted_class]}</div>', unsafe_allow_html=True)
|
359 |
+
emoji = "π·οΈ"
|
360 |
+
result_color = "#C62828"
|
361 |
+
|
362 |
+
# Result metrics in a nice grid
|
363 |
+
st.markdown('<div class="metrics-container">', unsafe_allow_html=True)
|
364 |
+
st.markdown(f"""
|
365 |
+
<div class="metric-card">
|
366 |
+
<div class="metric-value">{confidence:.1f}%</div>
|
367 |
+
<div class="metric-label">Confidence</div>
|
368 |
+
</div>
|
369 |
+
<div class="metric-card">
|
370 |
+
<div class="metric-value">{inference_time*1000:.0f}ms</div>
|
371 |
+
<div class="metric-label">Processing Time</div>
|
372 |
+
</div>
|
373 |
+
""", unsafe_allow_html=True)
|
374 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
375 |
+
|
376 |
+
# Progress bars for confidence scores
|
377 |
+
st.markdown("### Detection Confidence")
|
378 |
+
for i, class_name in enumerate(class_names):
|
379 |
+
# Convert float32 to Python float to fix the error
|
380 |
+
prob_value = float(probabilities[i])
|
381 |
+
prob_pct = prob_value * 100
|
382 |
+
emoji_prefix = "πΏ" if i == 0 else "π·οΈ"
|
383 |
+
st.progress(prob_value)
|
384 |
+
st.markdown(f"{emoji_prefix} **{class_name}:** {prob_pct:.1f}%")
|
385 |
+
|
386 |
+
# Recommendation with enhanced styling
|
387 |
+
st.markdown("### Recommendation")
|
388 |
+
if predicted_class == 0:
|
389 |
+
st.success("β
No action needed. Your plant appears healthy!")
|
390 |
+
else:
|
391 |
+
if confidence > 90:
|
392 |
+
st.error("""
|
393 |
+
π¨ **Immediate treatment recommended!**
|
394 |
+
|
395 |
+
High probability of spider mite infestation detected.
|
396 |
+
""")
|
397 |
+
|
398 |
+
st.markdown("""
|
399 |
+
<div style="background-color: #fff3e0; padding: 15px; border-radius: 5px; border-left: 5px solid #c62828;">
|
400 |
+
<h4 style="color: #c62828; margin-top: 0;">Treatment options:</h4>
|
401 |
+
<ul style="color: #333;">
|
402 |
+
<li><strong>Natural remedies:</strong> Apply neem oil or insecticidal soap</li>
|
403 |
+
<li><strong>Biological control:</strong> Introduce predatory mites</li>
|
404 |
+
<li><strong>Management:</strong> Prune heavily infested leaves</li>
|
405 |
+
<li><strong>Prevention:</strong> Increase humidity and monitor regularly</li>
|
406 |
+
</ul>
|
407 |
+
</div>
|
408 |
+
""", unsafe_allow_html=True)
|
409 |
+
else:
|
410 |
+
st.warning("""
|
411 |
+
β οΈ **Potential infestation detected.**
|
412 |
+
|
413 |
+
Monitor your plant closely and consider preventative treatment.
|
414 |
+
""")
|
415 |
+
else:
|
416 |
+
# Display placeholder when no image is uploaded
|
417 |
+
st.info("π Upload a leaf image to get started with the analysis.")
|
418 |
+
|
419 |
+
# Add a placeholder image with instructions
|
420 |
+
col1, col2, col3 = st.columns([1, 2, 1])
|
421 |
+
with col2:
|
422 |
+
st.markdown("""
|
423 |
+
<div style="text-align: center; padding: 40px; background-color: #f5f5f5; border-radius: 10px; margin: 20px 0;">
|
424 |
+
<img src="https://www.planetnatural.com/wp-content/uploads/2013/01/spider-mite-control.jpg" style="max-width: 80%; border-radius: 8px; margin-bottom: 20px;" />
|
425 |
+
<p style="font-size: 1.2rem; color: #555;">Upload a clear image of your plant leaf to detect spider mite infestations</p>
|
426 |
+
</div>
|
427 |
+
""", unsafe_allow_html=True)
|
428 |
+
|
429 |
+
with tab2:
|
430 |
+
col1, col2 = st.columns([3, 2])
|
431 |
+
|
432 |
+
with col1:
|
433 |
+
st.markdown('<h2 class="sub-header">About This Project</h2>', unsafe_allow_html=True)
|
434 |
+
st.markdown("""
|
435 |
+
## Spider Mite Detection Using AI
|
436 |
+
|
437 |
+
Spider mites are tiny pests that cause significant damage to crops worldwide. Early detection is crucial to
|
438 |
+
prevent severe crop damage and yield loss. Our AI-powered detection system helps farmers and gardeners
|
439 |
+
identify infestations before they become severe.
|
440 |
+
|
441 |
+
### Project Goals
|
442 |
+
1. Develop an AI model capable of classifying leaves as infested or healthy
|
443 |
+
2. Achieve high accuracy (>90%) in detection
|
444 |
+
3. Create an accessible application for farmers to use
|
445 |
+
4. Help reduce crop losses due to spider mite damage
|
446 |
+
|
447 |
+
### Technology Used
|
448 |
+
- **Deep Learning**: Transfer learning with modern CNN architectures
|
449 |
+
- **Model Architectures**: MobileNetV3, EfficientNet, ResNet18
|
450 |
+
- **Training Data**: Curated dataset of healthy and infested plant leaves
|
451 |
+
- **Web Application**: Built with Streamlit for accessibility
|
452 |
+
|
453 |
+
### Team Members
|
454 |
+
- Nitesh Kumar Datha Vemanapall
|
455 |
+
- Jithin Garapati
|
456 |
+
- Pavan Sai Korlapati
|
457 |
+
|
458 |
+
### Future Improvements
|
459 |
+
- Mobile application for in-field use
|
460 |
+
- Multi-class detection for various plant diseases
|
461 |
+
- Integration with automated spraying systems
|
462 |
+
- Expanded dataset for more plant species
|
463 |
+
""")
|
464 |
+
|
465 |
+
with col2:
|
466 |
+
st.image("https://www.cropscience.bayer.co.uk/-/media/bcs-inter/ws_uk/images/article-images/pest-encyclopedia/two-spotted-spider-mite.jpg", caption="Spider mite damage on leaves", use_column_width=True)
|
467 |
+
st.image("https://www.planetnatural.com/wp-content/uploads/2013/01/spider-mite-control.jpg", caption="Spider mite close-up", use_column_width=True)
|
468 |
+
|
469 |
+
# Add some statistics
|
470 |
+
st.markdown("""
|
471 |
+
<div style="background-color: #e8f5e9; padding: 20px; border-radius: 10px; margin-top: 20px;">
|
472 |
+
<h3 style="color: #2e7d32; margin-top: 0;">Spider Mite Impact</h3>
|
473 |
+
<ul>
|
474 |
+
<li><strong>Up to 60%</strong> crop yield reduction in severe infestations</li>
|
475 |
+
<li><strong>$1+ billion</strong> in annual agricultural losses worldwide</li>
|
476 |
+
<li><strong>200+ plant species</strong> are vulnerable to spider mite attacks</li>
|
477 |
+
<li><strong>95% accuracy</strong> achieved by our detection system</li>
|
478 |
+
</ul>
|
479 |
+
</div>
|
480 |
+
""", unsafe_allow_html=True)
|
481 |
+
|
482 |
+
if __name__ == "__main__":
|
483 |
+
main()
|
models/model.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:381c94a5c235c4432b7ecbce4e3dcfde91fe46acdbe93b612ebac6c7210d6e97
|
3 |
+
size 6193306
|
models/model_info.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model_name": "mobilenetv3",
|
3 |
+
"accuracy": 0.9908396946564886,
|
4 |
+
"epochs_trained": 10,
|
5 |
+
"dataset": "processed"
|
6 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit==1.31.0
|
2 |
+
torch==2.0.1
|
3 |
+
torchvision==0.15.2
|
4 |
+
Pillow==10.0.0
|
5 |
+
numpy==1.24.3
|
6 |
+
requests==2.31.0
|
test_images/healthy/0a31e630-0d98-416b-b0e4-88a88aad1dc5___RS_HL 9653.JPG
ADDED
|
test_images/healthy/0a9986e6-b629-4ff5-8aab-7488ea9b935b___RS_HL 9704.JPG
ADDED
|
test_images/healthy/0aacdad5-c9b9-4309-96e3-0797bbed1375___RS_HL 9836.JPG
ADDED
|
test_images/spider_mite/0a1c03ea-1a2d-449e-bcc4-4a8b62febf88___Com.G_SpM_FL 9433.JPG
ADDED
|
test_images/spider_mite/0cc75e2e-9e6f-4b8e-b564-3840c9ecff58___Com.G_SpM_FL 1442.JPG
ADDED
|
test_images/spider_mite/0cee18fc-bbbd-40dd-8d73-93df072c09ea___Com.G_SpM_FL 8904.JPG
ADDED
|