Spaces:
Sleeping
Sleeping
Commit
·
965ab8e
0
Parent(s):
Initial commit: Streamlit app version
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +5 -0
- .gradio/certificate.pem +31 -0
- LICENSE +201 -0
- README.md +50 -0
- checkpoints/sam2.1_hiera_large.pt +3 -0
- configs/sam2.1/sam2.1_hiera_l.yaml +120 -0
- models/best_mobilenet_v3_small.pth +3 -0
- requirements.txt +12 -0
- sam2/__init__.py +11 -0
- sam2/__pycache__/__init__.cpython-312.pyc +0 -0
- sam2/__pycache__/automatic_mask_generator.cpython-312.pyc +0 -0
- sam2/__pycache__/build_sam.cpython-312.pyc +0 -0
- sam2/__pycache__/sam2_image_predictor.cpython-312.pyc +0 -0
- sam2/__pycache__/sam2_video_predictor.cpython-312.pyc +0 -0
- sam2/automatic_mask_generator.py +454 -0
- sam2/benchmark.py +92 -0
- sam2/build_sam.py +174 -0
- sam2/configs/sam2.1/sam2.1_hiera_b+.yaml +116 -0
- sam2/configs/sam2.1/sam2.1_hiera_l.yaml +120 -0
- sam2/configs/sam2.1/sam2.1_hiera_s.yaml +119 -0
- sam2/configs/sam2.1/sam2.1_hiera_t.yaml +121 -0
- sam2/configs/sam2.1_training/sam2.1_hiera_b+_MOSE_finetune.yaml +339 -0
- sam2/configs/sam2/sam2_hiera_b+.yaml +113 -0
- sam2/configs/sam2/sam2_hiera_l.yaml +117 -0
- sam2/configs/sam2/sam2_hiera_s.yaml +116 -0
- sam2/configs/sam2/sam2_hiera_t.yaml +118 -0
- sam2/csrc/connected_components.cu +289 -0
- sam2/modeling/__init__.py +5 -0
- sam2/modeling/__pycache__/__init__.cpython-312.pyc +0 -0
- sam2/modeling/__pycache__/memory_attention.cpython-312.pyc +0 -0
- sam2/modeling/__pycache__/memory_encoder.cpython-312.pyc +0 -0
- sam2/modeling/__pycache__/position_encoding.cpython-312.pyc +0 -0
- sam2/modeling/__pycache__/sam2_base.cpython-312.pyc +0 -0
- sam2/modeling/__pycache__/sam2_utils.cpython-312.pyc +0 -0
- sam2/modeling/backbones/__init__.py +5 -0
- sam2/modeling/backbones/__pycache__/__init__.cpython-312.pyc +0 -0
- sam2/modeling/backbones/__pycache__/hieradet.cpython-312.pyc +0 -0
- sam2/modeling/backbones/__pycache__/image_encoder.cpython-312.pyc +0 -0
- sam2/modeling/backbones/__pycache__/utils.cpython-312.pyc +0 -0
- sam2/modeling/backbones/hieradet.py +317 -0
- sam2/modeling/backbones/image_encoder.py +134 -0
- sam2/modeling/backbones/utils.py +93 -0
- sam2/modeling/memory_attention.py +169 -0
- sam2/modeling/memory_encoder.py +181 -0
- sam2/modeling/position_encoding.py +239 -0
- sam2/modeling/sam/__init__.py +5 -0
- sam2/modeling/sam/__pycache__/__init__.cpython-312.pyc +0 -0
- sam2/modeling/sam/__pycache__/mask_decoder.cpython-312.pyc +0 -0
- sam2/modeling/sam/__pycache__/prompt_encoder.cpython-312.pyc +0 -0
- sam2/modeling/sam/__pycache__/transformer.cpython-312.pyc +0 -0
.gitattributes
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
.gradio/certificate.pem
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
-----BEGIN CERTIFICATE-----
|
2 |
+
MIIFazCCA1OgAwIBAgIRAIIQz7DSQONZRGPgu2OCiwAwDQYJKoZIhvcNAQELBQAw
|
3 |
+
TzELMAkGA1UEBhMCVVMxKTAnBgNVBAoTIEludGVybmV0IFNlY3VyaXR5IFJlc2Vh
|
4 |
+
cmNoIEdyb3VwMRUwEwYDVQQDEwxJU1JHIFJvb3QgWDEwHhcNMTUwNjA0MTEwNDM4
|
5 |
+
WhcNMzUwNjA0MTEwNDM4WjBPMQswCQYDVQQGEwJVUzEpMCcGA1UEChMgSW50ZXJu
|
6 |
+
ZXQgU2VjdXJpdHkgUmVzZWFyY2ggR3JvdXAxFTATBgNVBAMTDElTUkcgUm9vdCBY
|
7 |
+
MTCCAiIwDQYJKoZIhvcNAQEBBQADggIPADCCAgoCggIBAK3oJHP0FDfzm54rVygc
|
8 |
+
h77ct984kIxuPOZXoHj3dcKi/vVqbvYATyjb3miGbESTtrFj/RQSa78f0uoxmyF+
|
9 |
+
0TM8ukj13Xnfs7j/EvEhmkvBioZxaUpmZmyPfjxwv60pIgbz5MDmgK7iS4+3mX6U
|
10 |
+
A5/TR5d8mUgjU+g4rk8Kb4Mu0UlXjIB0ttov0DiNewNwIRt18jA8+o+u3dpjq+sW
|
11 |
+
T8KOEUt+zwvo/7V3LvSye0rgTBIlDHCNAymg4VMk7BPZ7hm/ELNKjD+Jo2FR3qyH
|
12 |
+
B5T0Y3HsLuJvW5iB4YlcNHlsdu87kGJ55tukmi8mxdAQ4Q7e2RCOFvu396j3x+UC
|
13 |
+
B5iPNgiV5+I3lg02dZ77DnKxHZu8A/lJBdiB3QW0KtZB6awBdpUKD9jf1b0SHzUv
|
14 |
+
KBds0pjBqAlkd25HN7rOrFleaJ1/ctaJxQZBKT5ZPt0m9STJEadao0xAH0ahmbWn
|
15 |
+
OlFuhjuefXKnEgV4We0+UXgVCwOPjdAvBbI+e0ocS3MFEvzG6uBQE3xDk3SzynTn
|
16 |
+
jh8BCNAw1FtxNrQHusEwMFxIt4I7mKZ9YIqioymCzLq9gwQbooMDQaHWBfEbwrbw
|
17 |
+
qHyGO0aoSCqI3Haadr8faqU9GY/rOPNk3sgrDQoo//fb4hVC1CLQJ13hef4Y53CI
|
18 |
+
rU7m2Ys6xt0nUW7/vGT1M0NPAgMBAAGjQjBAMA4GA1UdDwEB/wQEAwIBBjAPBgNV
|
19 |
+
HRMBAf8EBTADAQH/MB0GA1UdDgQWBBR5tFnme7bl5AFzgAiIyBpY9umbbjANBgkq
|
20 |
+
hkiG9w0BAQsFAAOCAgEAVR9YqbyyqFDQDLHYGmkgJykIrGF1XIpu+ILlaS/V9lZL
|
21 |
+
ubhzEFnTIZd+50xx+7LSYK05qAvqFyFWhfFQDlnrzuBZ6brJFe+GnY+EgPbk6ZGQ
|
22 |
+
3BebYhtF8GaV0nxvwuo77x/Py9auJ/GpsMiu/X1+mvoiBOv/2X/qkSsisRcOj/KK
|
23 |
+
NFtY2PwByVS5uCbMiogziUwthDyC3+6WVwW6LLv3xLfHTjuCvjHIInNzktHCgKQ5
|
24 |
+
ORAzI4JMPJ+GslWYHb4phowim57iaztXOoJwTdwJx4nLCgdNbOhdjsnvzqvHu7Ur
|
25 |
+
TkXWStAmzOVyyghqpZXjFaH3pO3JLF+l+/+sKAIuvtd7u+Nxe5AW0wdeRlN8NwdC
|
26 |
+
jNPElpzVmbUq4JUagEiuTDkHzsxHpFKVK7q4+63SM1N95R1NbdWhscdCb+ZAJzVc
|
27 |
+
oyi3B43njTOQ5yOf+1CceWxG1bQVs5ZufpsMljq4Ui0/1lvh+wjChP4kqKOJ2qxq
|
28 |
+
4RgqsahDYVvTH9w7jXbyLeiNdd8XM2w9U/t7y0Ff/9yi0GE44Za4rF2LN9d11TPA
|
29 |
+
mRGunUHBcnWEvgJBQl9nJEiU0Zsnvgc/ubhPgXRR4Xq37Z0j4r7g1SgEEzwxA57d
|
30 |
+
emyPxgcYxn/eR44/KJ4EBs+lVDR3veyJm+kXQ99b21/+jh5Xos1AnX5iItreGCc=
|
31 |
+
-----END CERTIFICATE-----
|
LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright [yyyy] [name of copyright owner]
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
README.md
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Red Spider Mite Detection (Streamlit)
|
3 |
+
emoji: 🕷️
|
4 |
+
colorFrom: green
|
5 |
+
colorTo: yellow
|
6 |
+
sdk: streamlit
|
7 |
+
sdk_version: 1.36.0
|
8 |
+
app_file: streamlit_app.py
|
9 |
+
pinned: false
|
10 |
+
---
|
11 |
+
|
12 |
+
# Hugging Face Gradio Demo: Red Spider Mite Detection
|
13 |
+
|
14 |
+
This application detects potential red spider mite infections on leaves in videos.
|
15 |
+
|
16 |
+
## How it Works
|
17 |
+
|
18 |
+
1. Upload a video or select an example.
|
19 |
+
2. Click the "Detect" button.
|
20 |
+
3. The application processes every 100th frame.
|
21 |
+
4. It uses SAM 2 (Segment Anything Model 2) to generate masks for potential objects.
|
22 |
+
5. Masks are filtered based on:
|
23 |
+
* Non-Maximum Suppression (NMS) to remove overlaps.
|
24 |
+
* Aspect Ratio (to remove likely branches).
|
25 |
+
* Color (HSV range check within the mask).
|
26 |
+
* Sharpness (Laplacian variance).
|
27 |
+
6. Segments passing all filters are classified as 'Infected' or 'Not Infected' using a fine-tuned MobileNetV3 model.
|
28 |
+
7. Results are displayed in two galleries:
|
29 |
+
* Top: Cropped images of the filtered leaf segments with their classification.
|
30 |
+
* Bottom: Full processed frames showing bounding boxes around detected infected leaves.
|
31 |
+
|
32 |
+
## Setup (Local)
|
33 |
+
|
34 |
+
1. Ensure Python 3.9+ is installed.
|
35 |
+
2. Clone the repository (if not already done).
|
36 |
+
3. Install dependencies: `pip install -r requirements.txt`
|
37 |
+
4. Run the app: `python app.py`
|
38 |
+
5. Open the local URL provided in your browser.
|
39 |
+
|
40 |
+
## Files
|
41 |
+
|
42 |
+
* `app.py`: Main Gradio application script.
|
43 |
+
* `requirements.txt`: Python dependencies.
|
44 |
+
* `checkpoints/`: Contains the SAM 2 model checkpoint.
|
45 |
+
* `models/`: Contains the classification model.
|
46 |
+
* `sam2/`: Contains the necessary SAM 2 library source code.
|
47 |
+
* `test_videos/`: Contains example videos for the demo.
|
48 |
+
* `README.md`: This file.
|
49 |
+
* `LICENSE`: Copied license file.
|
50 |
+
* `.gitignore`: Standard Python gitignore.
|
checkpoints/sam2.1_hiera_large.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2647878d5dfa5098f2f8649825738a9345572bae2d4350a2468587ece47dd318
|
3 |
+
size 898083611
|
configs/sam2.1/sam2.1_hiera_l.yaml
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
# Model
|
4 |
+
model:
|
5 |
+
_target_: sam2.modeling.sam2_base.SAM2Base
|
6 |
+
image_encoder:
|
7 |
+
_target_: sam2.modeling.backbones.image_encoder.ImageEncoder
|
8 |
+
scalp: 1
|
9 |
+
trunk:
|
10 |
+
_target_: sam2.modeling.backbones.hieradet.Hiera
|
11 |
+
embed_dim: 144
|
12 |
+
num_heads: 2
|
13 |
+
stages: [2, 6, 36, 4]
|
14 |
+
global_att_blocks: [23, 33, 43]
|
15 |
+
window_pos_embed_bkg_spatial_size: [7, 7]
|
16 |
+
window_spec: [8, 4, 16, 8]
|
17 |
+
neck:
|
18 |
+
_target_: sam2.modeling.backbones.image_encoder.FpnNeck
|
19 |
+
position_encoding:
|
20 |
+
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
21 |
+
num_pos_feats: 256
|
22 |
+
normalize: true
|
23 |
+
scale: null
|
24 |
+
temperature: 10000
|
25 |
+
d_model: 256
|
26 |
+
backbone_channel_list: [1152, 576, 288, 144]
|
27 |
+
fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
|
28 |
+
fpn_interp_model: nearest
|
29 |
+
|
30 |
+
memory_attention:
|
31 |
+
_target_: sam2.modeling.memory_attention.MemoryAttention
|
32 |
+
d_model: 256
|
33 |
+
pos_enc_at_input: true
|
34 |
+
layer:
|
35 |
+
_target_: sam2.modeling.memory_attention.MemoryAttentionLayer
|
36 |
+
activation: relu
|
37 |
+
dim_feedforward: 2048
|
38 |
+
dropout: 0.1
|
39 |
+
pos_enc_at_attn: false
|
40 |
+
self_attention:
|
41 |
+
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
42 |
+
rope_theta: 10000.0
|
43 |
+
feat_sizes: [64, 64]
|
44 |
+
embedding_dim: 256
|
45 |
+
num_heads: 1
|
46 |
+
downsample_rate: 1
|
47 |
+
dropout: 0.1
|
48 |
+
d_model: 256
|
49 |
+
pos_enc_at_cross_attn_keys: true
|
50 |
+
pos_enc_at_cross_attn_queries: false
|
51 |
+
cross_attention:
|
52 |
+
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
53 |
+
rope_theta: 10000.0
|
54 |
+
feat_sizes: [64, 64]
|
55 |
+
rope_k_repeat: True
|
56 |
+
embedding_dim: 256
|
57 |
+
num_heads: 1
|
58 |
+
downsample_rate: 1
|
59 |
+
dropout: 0.1
|
60 |
+
kv_in_dim: 64
|
61 |
+
num_layers: 4
|
62 |
+
|
63 |
+
memory_encoder:
|
64 |
+
_target_: sam2.modeling.memory_encoder.MemoryEncoder
|
65 |
+
out_dim: 64
|
66 |
+
position_encoding:
|
67 |
+
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
68 |
+
num_pos_feats: 64
|
69 |
+
normalize: true
|
70 |
+
scale: null
|
71 |
+
temperature: 10000
|
72 |
+
mask_downsampler:
|
73 |
+
_target_: sam2.modeling.memory_encoder.MaskDownSampler
|
74 |
+
kernel_size: 3
|
75 |
+
stride: 2
|
76 |
+
padding: 1
|
77 |
+
fuser:
|
78 |
+
_target_: sam2.modeling.memory_encoder.Fuser
|
79 |
+
layer:
|
80 |
+
_target_: sam2.modeling.memory_encoder.CXBlock
|
81 |
+
dim: 256
|
82 |
+
kernel_size: 7
|
83 |
+
padding: 3
|
84 |
+
layer_scale_init_value: 1e-6
|
85 |
+
use_dwconv: True # depth-wise convs
|
86 |
+
num_layers: 2
|
87 |
+
|
88 |
+
num_maskmem: 7
|
89 |
+
image_size: 1024
|
90 |
+
# apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
|
91 |
+
sigmoid_scale_for_mem_enc: 20.0
|
92 |
+
sigmoid_bias_for_mem_enc: -10.0
|
93 |
+
use_mask_input_as_output_without_sam: true
|
94 |
+
# Memory
|
95 |
+
directly_add_no_mem_embed: true
|
96 |
+
no_obj_embed_spatial: true
|
97 |
+
# use high-resolution feature map in the SAM mask decoder
|
98 |
+
use_high_res_features_in_sam: true
|
99 |
+
# output 3 masks on the first click on initial conditioning frames
|
100 |
+
multimask_output_in_sam: true
|
101 |
+
# SAM heads
|
102 |
+
iou_prediction_use_sigmoid: True
|
103 |
+
# cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
104 |
+
use_obj_ptrs_in_encoder: true
|
105 |
+
add_tpos_enc_to_obj_ptrs: true
|
106 |
+
proj_tpos_enc_in_obj_ptrs: true
|
107 |
+
use_signed_tpos_enc_to_obj_ptrs: true
|
108 |
+
only_obj_ptrs_in_the_past_for_eval: true
|
109 |
+
# object occlusion prediction
|
110 |
+
pred_obj_scores: true
|
111 |
+
pred_obj_scores_mlp: true
|
112 |
+
fixed_no_obj_ptr: true
|
113 |
+
# multimask tracking settings
|
114 |
+
multimask_output_for_tracking: true
|
115 |
+
use_multimask_token_for_obj_ptr: true
|
116 |
+
multimask_min_pt_num: 0
|
117 |
+
multimask_max_pt_num: 1
|
118 |
+
use_mlp_for_obj_ptr_proj: true
|
119 |
+
# Compilation flag
|
120 |
+
compile_image_encoder: False
|
models/best_mobilenet_v3_small.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cdc805e26db26f1c3706eafaf68a62ef6188ca9aab707711029bc40082b1050d
|
3 |
+
size 6222538
|
requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
torch
|
3 |
+
torchvision
|
4 |
+
opencv-python-headless>=4.5
|
5 |
+
numpy>=1.20
|
6 |
+
Pillow>=9.0
|
7 |
+
# Add 'sam2 @ file:///' + path_to_sam2_package if installing locally
|
8 |
+
# Example: sam2 @ file:///D:/Collage/AI%20Capstone/SAM-2/sam2
|
9 |
+
# Or ensure sam2 is installed in the environment via 'pip install -e .' from the root
|
10 |
+
hydra-core>=1.3.2
|
11 |
+
omegaconf>=2.3.0
|
12 |
+
iopath>=0.1.10
|
sam2/__init__.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
from hydra import initialize_config_module
|
8 |
+
from hydra.core.global_hydra import GlobalHydra
|
9 |
+
|
10 |
+
if not GlobalHydra.instance().is_initialized():
|
11 |
+
initialize_config_module("sam2", version_base="1.2")
|
sam2/__pycache__/__init__.cpython-312.pyc
ADDED
Binary file (441 Bytes). View file
|
|
sam2/__pycache__/automatic_mask_generator.cpython-312.pyc
ADDED
Binary file (19.6 kB). View file
|
|
sam2/__pycache__/build_sam.cpython-312.pyc
ADDED
Binary file (5.38 kB). View file
|
|
sam2/__pycache__/sam2_image_predictor.cpython-312.pyc
ADDED
Binary file (22.6 kB). View file
|
|
sam2/__pycache__/sam2_video_predictor.cpython-312.pyc
ADDED
Binary file (41.4 kB). View file
|
|
sam2/automatic_mask_generator.py
ADDED
@@ -0,0 +1,454 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
# Adapted from https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/automatic_mask_generator.py
|
8 |
+
from typing import Any, Dict, List, Optional, Tuple
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
import torch
|
12 |
+
from torchvision.ops.boxes import batched_nms, box_area # type: ignore
|
13 |
+
|
14 |
+
from sam2.modeling.sam2_base import SAM2Base
|
15 |
+
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
16 |
+
from sam2.utils.amg import (
|
17 |
+
area_from_rle,
|
18 |
+
batch_iterator,
|
19 |
+
batched_mask_to_box,
|
20 |
+
box_xyxy_to_xywh,
|
21 |
+
build_all_layer_point_grids,
|
22 |
+
calculate_stability_score,
|
23 |
+
coco_encode_rle,
|
24 |
+
generate_crop_boxes,
|
25 |
+
is_box_near_crop_edge,
|
26 |
+
mask_to_rle_pytorch,
|
27 |
+
MaskData,
|
28 |
+
remove_small_regions,
|
29 |
+
rle_to_mask,
|
30 |
+
uncrop_boxes_xyxy,
|
31 |
+
uncrop_masks,
|
32 |
+
uncrop_points,
|
33 |
+
)
|
34 |
+
|
35 |
+
|
36 |
+
class SAM2AutomaticMaskGenerator:
|
37 |
+
def __init__(
|
38 |
+
self,
|
39 |
+
model: SAM2Base,
|
40 |
+
points_per_side: Optional[int] = 32,
|
41 |
+
points_per_batch: int = 64,
|
42 |
+
pred_iou_thresh: float = 0.8,
|
43 |
+
stability_score_thresh: float = 0.95,
|
44 |
+
stability_score_offset: float = 1.0,
|
45 |
+
mask_threshold: float = 0.0,
|
46 |
+
box_nms_thresh: float = 0.7,
|
47 |
+
crop_n_layers: int = 0,
|
48 |
+
crop_nms_thresh: float = 0.7,
|
49 |
+
crop_overlap_ratio: float = 512 / 1500,
|
50 |
+
crop_n_points_downscale_factor: int = 1,
|
51 |
+
point_grids: Optional[List[np.ndarray]] = None,
|
52 |
+
min_mask_region_area: int = 0,
|
53 |
+
output_mode: str = "binary_mask",
|
54 |
+
use_m2m: bool = False,
|
55 |
+
multimask_output: bool = True,
|
56 |
+
**kwargs,
|
57 |
+
) -> None:
|
58 |
+
"""
|
59 |
+
Using a SAM 2 model, generates masks for the entire image.
|
60 |
+
Generates a grid of point prompts over the image, then filters
|
61 |
+
low quality and duplicate masks. The default settings are chosen
|
62 |
+
for SAM 2 with a HieraL backbone.
|
63 |
+
|
64 |
+
Arguments:
|
65 |
+
model (Sam): The SAM 2 model to use for mask prediction.
|
66 |
+
points_per_side (int or None): The number of points to be sampled
|
67 |
+
along one side of the image. The total number of points is
|
68 |
+
points_per_side**2. If None, 'point_grids' must provide explicit
|
69 |
+
point sampling.
|
70 |
+
points_per_batch (int): Sets the number of points run simultaneously
|
71 |
+
by the model. Higher numbers may be faster but use more GPU memory.
|
72 |
+
pred_iou_thresh (float): A filtering threshold in [0,1], using the
|
73 |
+
model's predicted mask quality.
|
74 |
+
stability_score_thresh (float): A filtering threshold in [0,1], using
|
75 |
+
the stability of the mask under changes to the cutoff used to binarize
|
76 |
+
the model's mask predictions.
|
77 |
+
stability_score_offset (float): The amount to shift the cutoff when
|
78 |
+
calculated the stability score.
|
79 |
+
mask_threshold (float): Threshold for binarizing the mask logits
|
80 |
+
box_nms_thresh (float): The box IoU cutoff used by non-maximal
|
81 |
+
suppression to filter duplicate masks.
|
82 |
+
crop_n_layers (int): If >0, mask prediction will be run again on
|
83 |
+
crops of the image. Sets the number of layers to run, where each
|
84 |
+
layer has 2**i_layer number of image crops.
|
85 |
+
crop_nms_thresh (float): The box IoU cutoff used by non-maximal
|
86 |
+
suppression to filter duplicate masks between different crops.
|
87 |
+
crop_overlap_ratio (float): Sets the degree to which crops overlap.
|
88 |
+
In the first crop layer, crops will overlap by this fraction of
|
89 |
+
the image length. Later layers with more crops scale down this overlap.
|
90 |
+
crop_n_points_downscale_factor (int): The number of points-per-side
|
91 |
+
sampled in layer n is scaled down by crop_n_points_downscale_factor**n.
|
92 |
+
point_grids (list(np.ndarray) or None): A list over explicit grids
|
93 |
+
of points used for sampling, normalized to [0,1]. The nth grid in the
|
94 |
+
list is used in the nth crop layer. Exclusive with points_per_side.
|
95 |
+
min_mask_region_area (int): If >0, postprocessing will be applied
|
96 |
+
to remove disconnected regions and holes in masks with area smaller
|
97 |
+
than min_mask_region_area. Requires opencv.
|
98 |
+
output_mode (str): The form masks are returned in. Can be 'binary_mask',
|
99 |
+
'uncompressed_rle', or 'coco_rle'. 'coco_rle' requires pycocotools.
|
100 |
+
For large resolutions, 'binary_mask' may consume large amounts of
|
101 |
+
memory.
|
102 |
+
use_m2m (bool): Whether to add a one step refinement using previous mask predictions.
|
103 |
+
multimask_output (bool): Whether to output multimask at each point of the grid.
|
104 |
+
"""
|
105 |
+
|
106 |
+
assert (points_per_side is None) != (
|
107 |
+
point_grids is None
|
108 |
+
), "Exactly one of points_per_side or point_grid must be provided."
|
109 |
+
if points_per_side is not None:
|
110 |
+
self.point_grids = build_all_layer_point_grids(
|
111 |
+
points_per_side,
|
112 |
+
crop_n_layers,
|
113 |
+
crop_n_points_downscale_factor,
|
114 |
+
)
|
115 |
+
elif point_grids is not None:
|
116 |
+
self.point_grids = point_grids
|
117 |
+
else:
|
118 |
+
raise ValueError("Can't have both points_per_side and point_grid be None.")
|
119 |
+
|
120 |
+
assert output_mode in [
|
121 |
+
"binary_mask",
|
122 |
+
"uncompressed_rle",
|
123 |
+
"coco_rle",
|
124 |
+
], f"Unknown output_mode {output_mode}."
|
125 |
+
if output_mode == "coco_rle":
|
126 |
+
try:
|
127 |
+
from pycocotools import mask as mask_utils # type: ignore # noqa: F401
|
128 |
+
except ImportError as e:
|
129 |
+
print("Please install pycocotools")
|
130 |
+
raise e
|
131 |
+
|
132 |
+
self.predictor = SAM2ImagePredictor(
|
133 |
+
model,
|
134 |
+
max_hole_area=min_mask_region_area,
|
135 |
+
max_sprinkle_area=min_mask_region_area,
|
136 |
+
)
|
137 |
+
self.points_per_batch = points_per_batch
|
138 |
+
self.pred_iou_thresh = pred_iou_thresh
|
139 |
+
self.stability_score_thresh = stability_score_thresh
|
140 |
+
self.stability_score_offset = stability_score_offset
|
141 |
+
self.mask_threshold = mask_threshold
|
142 |
+
self.box_nms_thresh = box_nms_thresh
|
143 |
+
self.crop_n_layers = crop_n_layers
|
144 |
+
self.crop_nms_thresh = crop_nms_thresh
|
145 |
+
self.crop_overlap_ratio = crop_overlap_ratio
|
146 |
+
self.crop_n_points_downscale_factor = crop_n_points_downscale_factor
|
147 |
+
self.min_mask_region_area = min_mask_region_area
|
148 |
+
self.output_mode = output_mode
|
149 |
+
self.use_m2m = use_m2m
|
150 |
+
self.multimask_output = multimask_output
|
151 |
+
|
152 |
+
@classmethod
|
153 |
+
def from_pretrained(cls, model_id: str, **kwargs) -> "SAM2AutomaticMaskGenerator":
|
154 |
+
"""
|
155 |
+
Load a pretrained model from the Hugging Face hub.
|
156 |
+
|
157 |
+
Arguments:
|
158 |
+
model_id (str): The Hugging Face repository ID.
|
159 |
+
**kwargs: Additional arguments to pass to the model constructor.
|
160 |
+
|
161 |
+
Returns:
|
162 |
+
(SAM2AutomaticMaskGenerator): The loaded model.
|
163 |
+
"""
|
164 |
+
from sam2.build_sam import build_sam2_hf
|
165 |
+
|
166 |
+
sam_model = build_sam2_hf(model_id, **kwargs)
|
167 |
+
return cls(sam_model, **kwargs)
|
168 |
+
|
169 |
+
@torch.no_grad()
|
170 |
+
def generate(self, image: np.ndarray) -> List[Dict[str, Any]]:
|
171 |
+
"""
|
172 |
+
Generates masks for the given image.
|
173 |
+
|
174 |
+
Arguments:
|
175 |
+
image (np.ndarray): The image to generate masks for, in HWC uint8 format.
|
176 |
+
|
177 |
+
Returns:
|
178 |
+
list(dict(str, any)): A list over records for masks. Each record is
|
179 |
+
a dict containing the following keys:
|
180 |
+
segmentation (dict(str, any) or np.ndarray): The mask. If
|
181 |
+
output_mode='binary_mask', is an array of shape HW. Otherwise,
|
182 |
+
is a dictionary containing the RLE.
|
183 |
+
bbox (list(float)): The box around the mask, in XYWH format.
|
184 |
+
area (int): The area in pixels of the mask.
|
185 |
+
predicted_iou (float): The model's own prediction of the mask's
|
186 |
+
quality. This is filtered by the pred_iou_thresh parameter.
|
187 |
+
point_coords (list(list(float))): The point coordinates input
|
188 |
+
to the model to generate this mask.
|
189 |
+
stability_score (float): A measure of the mask's quality. This
|
190 |
+
is filtered on using the stability_score_thresh parameter.
|
191 |
+
crop_box (list(float)): The crop of the image used to generate
|
192 |
+
the mask, given in XYWH format.
|
193 |
+
"""
|
194 |
+
|
195 |
+
# Generate masks
|
196 |
+
mask_data = self._generate_masks(image)
|
197 |
+
|
198 |
+
# Encode masks
|
199 |
+
if self.output_mode == "coco_rle":
|
200 |
+
mask_data["segmentations"] = [
|
201 |
+
coco_encode_rle(rle) for rle in mask_data["rles"]
|
202 |
+
]
|
203 |
+
elif self.output_mode == "binary_mask":
|
204 |
+
mask_data["segmentations"] = [rle_to_mask(rle) for rle in mask_data["rles"]]
|
205 |
+
else:
|
206 |
+
mask_data["segmentations"] = mask_data["rles"]
|
207 |
+
|
208 |
+
# Write mask records
|
209 |
+
curr_anns = []
|
210 |
+
for idx in range(len(mask_data["segmentations"])):
|
211 |
+
ann = {
|
212 |
+
"segmentation": mask_data["segmentations"][idx],
|
213 |
+
"area": area_from_rle(mask_data["rles"][idx]),
|
214 |
+
"bbox": box_xyxy_to_xywh(mask_data["boxes"][idx]).tolist(),
|
215 |
+
"predicted_iou": mask_data["iou_preds"][idx].item(),
|
216 |
+
"point_coords": [mask_data["points"][idx].tolist()],
|
217 |
+
"stability_score": mask_data["stability_score"][idx].item(),
|
218 |
+
"crop_box": box_xyxy_to_xywh(mask_data["crop_boxes"][idx]).tolist(),
|
219 |
+
}
|
220 |
+
curr_anns.append(ann)
|
221 |
+
|
222 |
+
return curr_anns
|
223 |
+
|
224 |
+
def _generate_masks(self, image: np.ndarray) -> MaskData:
|
225 |
+
orig_size = image.shape[:2]
|
226 |
+
crop_boxes, layer_idxs = generate_crop_boxes(
|
227 |
+
orig_size, self.crop_n_layers, self.crop_overlap_ratio
|
228 |
+
)
|
229 |
+
|
230 |
+
# Iterate over image crops
|
231 |
+
data = MaskData()
|
232 |
+
for crop_box, layer_idx in zip(crop_boxes, layer_idxs):
|
233 |
+
crop_data = self._process_crop(image, crop_box, layer_idx, orig_size)
|
234 |
+
data.cat(crop_data)
|
235 |
+
|
236 |
+
# Remove duplicate masks between crops
|
237 |
+
if len(crop_boxes) > 1:
|
238 |
+
# Prefer masks from smaller crops
|
239 |
+
scores = 1 / box_area(data["crop_boxes"])
|
240 |
+
scores = scores.to(data["boxes"].device)
|
241 |
+
keep_by_nms = batched_nms(
|
242 |
+
data["boxes"].float(),
|
243 |
+
scores,
|
244 |
+
torch.zeros_like(data["boxes"][:, 0]), # categories
|
245 |
+
iou_threshold=self.crop_nms_thresh,
|
246 |
+
)
|
247 |
+
data.filter(keep_by_nms)
|
248 |
+
data.to_numpy()
|
249 |
+
return data
|
250 |
+
|
251 |
+
def _process_crop(
|
252 |
+
self,
|
253 |
+
image: np.ndarray,
|
254 |
+
crop_box: List[int],
|
255 |
+
crop_layer_idx: int,
|
256 |
+
orig_size: Tuple[int, ...],
|
257 |
+
) -> MaskData:
|
258 |
+
# Crop the image and calculate embeddings
|
259 |
+
x0, y0, x1, y1 = crop_box
|
260 |
+
cropped_im = image[y0:y1, x0:x1, :]
|
261 |
+
cropped_im_size = cropped_im.shape[:2]
|
262 |
+
self.predictor.set_image(cropped_im)
|
263 |
+
|
264 |
+
# Get points for this crop
|
265 |
+
points_scale = np.array(cropped_im_size)[None, ::-1]
|
266 |
+
points_for_image = self.point_grids[crop_layer_idx] * points_scale
|
267 |
+
|
268 |
+
# Generate masks for this crop in batches
|
269 |
+
data = MaskData()
|
270 |
+
for (points,) in batch_iterator(self.points_per_batch, points_for_image):
|
271 |
+
batch_data = self._process_batch(
|
272 |
+
points, cropped_im_size, crop_box, orig_size, normalize=True
|
273 |
+
)
|
274 |
+
data.cat(batch_data)
|
275 |
+
del batch_data
|
276 |
+
self.predictor.reset_predictor()
|
277 |
+
|
278 |
+
# Remove duplicates within this crop.
|
279 |
+
keep_by_nms = batched_nms(
|
280 |
+
data["boxes"].float(),
|
281 |
+
data["iou_preds"],
|
282 |
+
torch.zeros_like(data["boxes"][:, 0]), # categories
|
283 |
+
iou_threshold=self.box_nms_thresh,
|
284 |
+
)
|
285 |
+
data.filter(keep_by_nms)
|
286 |
+
|
287 |
+
# Return to the original image frame
|
288 |
+
data["boxes"] = uncrop_boxes_xyxy(data["boxes"], crop_box)
|
289 |
+
data["points"] = uncrop_points(data["points"], crop_box)
|
290 |
+
data["crop_boxes"] = torch.tensor([crop_box for _ in range(len(data["rles"]))])
|
291 |
+
|
292 |
+
return data
|
293 |
+
|
294 |
+
def _process_batch(
|
295 |
+
self,
|
296 |
+
points: np.ndarray,
|
297 |
+
im_size: Tuple[int, ...],
|
298 |
+
crop_box: List[int],
|
299 |
+
orig_size: Tuple[int, ...],
|
300 |
+
normalize=False,
|
301 |
+
) -> MaskData:
|
302 |
+
orig_h, orig_w = orig_size
|
303 |
+
|
304 |
+
# Run model on this batch
|
305 |
+
points = torch.as_tensor(
|
306 |
+
points, dtype=torch.float32, device=self.predictor.device
|
307 |
+
)
|
308 |
+
in_points = self.predictor._transforms.transform_coords(
|
309 |
+
points, normalize=normalize, orig_hw=im_size
|
310 |
+
)
|
311 |
+
in_labels = torch.ones(
|
312 |
+
in_points.shape[0], dtype=torch.int, device=in_points.device
|
313 |
+
)
|
314 |
+
masks, iou_preds, low_res_masks = self.predictor._predict(
|
315 |
+
in_points[:, None, :],
|
316 |
+
in_labels[:, None],
|
317 |
+
multimask_output=self.multimask_output,
|
318 |
+
return_logits=True,
|
319 |
+
)
|
320 |
+
|
321 |
+
# Serialize predictions and store in MaskData
|
322 |
+
data = MaskData(
|
323 |
+
masks=masks.flatten(0, 1),
|
324 |
+
iou_preds=iou_preds.flatten(0, 1),
|
325 |
+
points=points.repeat_interleave(masks.shape[1], dim=0),
|
326 |
+
low_res_masks=low_res_masks.flatten(0, 1),
|
327 |
+
)
|
328 |
+
del masks
|
329 |
+
|
330 |
+
if not self.use_m2m:
|
331 |
+
# Filter by predicted IoU
|
332 |
+
if self.pred_iou_thresh > 0.0:
|
333 |
+
keep_mask = data["iou_preds"] > self.pred_iou_thresh
|
334 |
+
data.filter(keep_mask)
|
335 |
+
|
336 |
+
# Calculate and filter by stability score
|
337 |
+
data["stability_score"] = calculate_stability_score(
|
338 |
+
data["masks"], self.mask_threshold, self.stability_score_offset
|
339 |
+
)
|
340 |
+
if self.stability_score_thresh > 0.0:
|
341 |
+
keep_mask = data["stability_score"] >= self.stability_score_thresh
|
342 |
+
data.filter(keep_mask)
|
343 |
+
else:
|
344 |
+
# One step refinement using previous mask predictions
|
345 |
+
in_points = self.predictor._transforms.transform_coords(
|
346 |
+
data["points"], normalize=normalize, orig_hw=im_size
|
347 |
+
)
|
348 |
+
labels = torch.ones(
|
349 |
+
in_points.shape[0], dtype=torch.int, device=in_points.device
|
350 |
+
)
|
351 |
+
masks, ious = self.refine_with_m2m(
|
352 |
+
in_points, labels, data["low_res_masks"], self.points_per_batch
|
353 |
+
)
|
354 |
+
data["masks"] = masks.squeeze(1)
|
355 |
+
data["iou_preds"] = ious.squeeze(1)
|
356 |
+
|
357 |
+
if self.pred_iou_thresh > 0.0:
|
358 |
+
keep_mask = data["iou_preds"] > self.pred_iou_thresh
|
359 |
+
data.filter(keep_mask)
|
360 |
+
|
361 |
+
data["stability_score"] = calculate_stability_score(
|
362 |
+
data["masks"], self.mask_threshold, self.stability_score_offset
|
363 |
+
)
|
364 |
+
if self.stability_score_thresh > 0.0:
|
365 |
+
keep_mask = data["stability_score"] >= self.stability_score_thresh
|
366 |
+
data.filter(keep_mask)
|
367 |
+
|
368 |
+
# Threshold masks and calculate boxes
|
369 |
+
data["masks"] = data["masks"] > self.mask_threshold
|
370 |
+
data["boxes"] = batched_mask_to_box(data["masks"])
|
371 |
+
|
372 |
+
# Filter boxes that touch crop boundaries
|
373 |
+
keep_mask = ~is_box_near_crop_edge(
|
374 |
+
data["boxes"], crop_box, [0, 0, orig_w, orig_h]
|
375 |
+
)
|
376 |
+
if not torch.all(keep_mask):
|
377 |
+
data.filter(keep_mask)
|
378 |
+
|
379 |
+
# Compress to RLE
|
380 |
+
data["masks"] = uncrop_masks(data["masks"], crop_box, orig_h, orig_w)
|
381 |
+
data["rles"] = mask_to_rle_pytorch(data["masks"])
|
382 |
+
del data["masks"]
|
383 |
+
|
384 |
+
return data
|
385 |
+
|
386 |
+
@staticmethod
|
387 |
+
def postprocess_small_regions(
|
388 |
+
mask_data: MaskData, min_area: int, nms_thresh: float
|
389 |
+
) -> MaskData:
|
390 |
+
"""
|
391 |
+
Removes small disconnected regions and holes in masks, then reruns
|
392 |
+
box NMS to remove any new duplicates.
|
393 |
+
|
394 |
+
Edits mask_data in place.
|
395 |
+
|
396 |
+
Requires open-cv as a dependency.
|
397 |
+
"""
|
398 |
+
if len(mask_data["rles"]) == 0:
|
399 |
+
return mask_data
|
400 |
+
|
401 |
+
# Filter small disconnected regions and holes
|
402 |
+
new_masks = []
|
403 |
+
scores = []
|
404 |
+
for rle in mask_data["rles"]:
|
405 |
+
mask = rle_to_mask(rle)
|
406 |
+
|
407 |
+
mask, changed = remove_small_regions(mask, min_area, mode="holes")
|
408 |
+
unchanged = not changed
|
409 |
+
mask, changed = remove_small_regions(mask, min_area, mode="islands")
|
410 |
+
unchanged = unchanged and not changed
|
411 |
+
|
412 |
+
new_masks.append(torch.as_tensor(mask).unsqueeze(0))
|
413 |
+
# Give score=0 to changed masks and score=1 to unchanged masks
|
414 |
+
# so NMS will prefer ones that didn't need postprocessing
|
415 |
+
scores.append(float(unchanged))
|
416 |
+
|
417 |
+
# Recalculate boxes and remove any new duplicates
|
418 |
+
masks = torch.cat(new_masks, dim=0)
|
419 |
+
boxes = batched_mask_to_box(masks)
|
420 |
+
keep_by_nms = batched_nms(
|
421 |
+
boxes.float(),
|
422 |
+
torch.as_tensor(scores),
|
423 |
+
torch.zeros_like(boxes[:, 0]), # categories
|
424 |
+
iou_threshold=nms_thresh,
|
425 |
+
)
|
426 |
+
|
427 |
+
# Only recalculate RLEs for masks that have changed
|
428 |
+
for i_mask in keep_by_nms:
|
429 |
+
if scores[i_mask] == 0.0:
|
430 |
+
mask_torch = masks[i_mask].unsqueeze(0)
|
431 |
+
mask_data["rles"][i_mask] = mask_to_rle_pytorch(mask_torch)[0]
|
432 |
+
mask_data["boxes"][i_mask] = boxes[i_mask] # update res directly
|
433 |
+
mask_data.filter(keep_by_nms)
|
434 |
+
|
435 |
+
return mask_data
|
436 |
+
|
437 |
+
def refine_with_m2m(self, points, point_labels, low_res_masks, points_per_batch):
|
438 |
+
new_masks = []
|
439 |
+
new_iou_preds = []
|
440 |
+
|
441 |
+
for cur_points, cur_point_labels, low_res_mask in batch_iterator(
|
442 |
+
points_per_batch, points, point_labels, low_res_masks
|
443 |
+
):
|
444 |
+
best_masks, best_iou_preds, _ = self.predictor._predict(
|
445 |
+
cur_points[:, None, :],
|
446 |
+
cur_point_labels[:, None],
|
447 |
+
mask_input=low_res_mask[:, None, :],
|
448 |
+
multimask_output=False,
|
449 |
+
return_logits=True,
|
450 |
+
)
|
451 |
+
new_masks.append(best_masks)
|
452 |
+
new_iou_preds.append(best_iou_preds)
|
453 |
+
masks = torch.cat(new_masks, dim=0)
|
454 |
+
return masks, torch.cat(new_iou_preds, dim=0)
|
sam2/benchmark.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import os
|
8 |
+
import time
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
import torch
|
12 |
+
from tqdm import tqdm
|
13 |
+
|
14 |
+
from sam2.build_sam import build_sam2_video_predictor
|
15 |
+
|
16 |
+
# Only cuda supported
|
17 |
+
assert torch.cuda.is_available()
|
18 |
+
device = torch.device("cuda")
|
19 |
+
|
20 |
+
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
|
21 |
+
if torch.cuda.get_device_properties(0).major >= 8:
|
22 |
+
# turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
|
23 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
24 |
+
torch.backends.cudnn.allow_tf32 = True
|
25 |
+
|
26 |
+
# Config and checkpoint
|
27 |
+
sam2_checkpoint = "checkpoints/sam2.1_hiera_base_plus.pt"
|
28 |
+
model_cfg = "configs/sam2.1/sam2.1_hiera_b+.yaml"
|
29 |
+
|
30 |
+
# Build video predictor with vos_optimized=True setting
|
31 |
+
predictor = build_sam2_video_predictor(
|
32 |
+
model_cfg, sam2_checkpoint, device=device, vos_optimized=True
|
33 |
+
)
|
34 |
+
|
35 |
+
|
36 |
+
# Initialize with video
|
37 |
+
video_dir = "notebooks/videos/bedroom"
|
38 |
+
# scan all the JPEG frame names in this directory
|
39 |
+
frame_names = [
|
40 |
+
p
|
41 |
+
for p in os.listdir(video_dir)
|
42 |
+
if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"]
|
43 |
+
]
|
44 |
+
frame_names.sort(key=lambda p: int(os.path.splitext(p)[0]))
|
45 |
+
inference_state = predictor.init_state(video_path=video_dir)
|
46 |
+
|
47 |
+
|
48 |
+
# Number of runs, warmup etc
|
49 |
+
warm_up, runs = 5, 25
|
50 |
+
verbose = True
|
51 |
+
num_frames = len(frame_names)
|
52 |
+
total, count = 0, 0
|
53 |
+
torch.cuda.empty_cache()
|
54 |
+
|
55 |
+
# We will select an object with a click.
|
56 |
+
# See video_predictor_example.ipynb for more detailed explanation
|
57 |
+
ann_frame_idx, ann_obj_id = 0, 1
|
58 |
+
# Add a positive click at (x, y) = (210, 350)
|
59 |
+
# For labels, `1` means positive click
|
60 |
+
points = np.array([[210, 350]], dtype=np.float32)
|
61 |
+
labels = np.array([1], np.int32)
|
62 |
+
|
63 |
+
_, out_obj_ids, out_mask_logits = predictor.add_new_points_or_box(
|
64 |
+
inference_state=inference_state,
|
65 |
+
frame_idx=ann_frame_idx,
|
66 |
+
obj_id=ann_obj_id,
|
67 |
+
points=points,
|
68 |
+
labels=labels,
|
69 |
+
)
|
70 |
+
|
71 |
+
# Warmup and then average FPS over several runs
|
72 |
+
with torch.autocast("cuda", torch.bfloat16):
|
73 |
+
with torch.inference_mode():
|
74 |
+
for i in tqdm(range(runs), disable=not verbose, desc="Benchmarking"):
|
75 |
+
start = time.time()
|
76 |
+
# Start tracking
|
77 |
+
for (
|
78 |
+
out_frame_idx,
|
79 |
+
out_obj_ids,
|
80 |
+
out_mask_logits,
|
81 |
+
) in predictor.propagate_in_video(inference_state):
|
82 |
+
pass
|
83 |
+
|
84 |
+
end = time.time()
|
85 |
+
total += end - start
|
86 |
+
count += 1
|
87 |
+
if i == warm_up - 1:
|
88 |
+
print("Warmup FPS: ", count * num_frames / total)
|
89 |
+
total = 0
|
90 |
+
count = 0
|
91 |
+
|
92 |
+
print("FPS: ", count * num_frames / total)
|
sam2/build_sam.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import logging
|
8 |
+
import os
|
9 |
+
|
10 |
+
import torch
|
11 |
+
from hydra import compose
|
12 |
+
from hydra.utils import instantiate
|
13 |
+
from omegaconf import OmegaConf
|
14 |
+
|
15 |
+
import sam2
|
16 |
+
|
17 |
+
# Check if the user is running Python from the parent directory of the sam2 repo
|
18 |
+
# (i.e. the directory where this repo is cloned into) -- this is not supported since
|
19 |
+
# it could shadow the sam2 package and cause issues.
|
20 |
+
if os.path.isdir(os.path.join(sam2.__path__[0], "sam2")):
|
21 |
+
# If the user has "sam2/sam2" in their path, they are likey importing the repo itself
|
22 |
+
# as "sam2" rather than importing the "sam2" python package (i.e. "sam2/sam2" directory).
|
23 |
+
# This typically happens because the user is running Python from the parent directory
|
24 |
+
# that contains the sam2 repo they cloned.
|
25 |
+
raise RuntimeError(
|
26 |
+
"You're likely running Python from the parent directory of the sam2 repository "
|
27 |
+
"(i.e. the directory where https://github.com/facebookresearch/sam2 is cloned into). "
|
28 |
+
"This is not supported since the `sam2` Python package could be shadowed by the "
|
29 |
+
"repository name (the repository is also named `sam2` and contains the Python package "
|
30 |
+
"in `sam2/sam2`). Please run Python from another directory (e.g. from the repo dir "
|
31 |
+
"rather than its parent dir, or from your home directory) after installing SAM 2."
|
32 |
+
)
|
33 |
+
|
34 |
+
|
35 |
+
HF_MODEL_ID_TO_FILENAMES = {
|
36 |
+
"facebook/sam2-hiera-tiny": (
|
37 |
+
"configs/sam2/sam2_hiera_t.yaml",
|
38 |
+
"sam2_hiera_tiny.pt",
|
39 |
+
),
|
40 |
+
"facebook/sam2-hiera-small": (
|
41 |
+
"configs/sam2/sam2_hiera_s.yaml",
|
42 |
+
"sam2_hiera_small.pt",
|
43 |
+
),
|
44 |
+
"facebook/sam2-hiera-base-plus": (
|
45 |
+
"configs/sam2/sam2_hiera_b+.yaml",
|
46 |
+
"sam2_hiera_base_plus.pt",
|
47 |
+
),
|
48 |
+
"facebook/sam2-hiera-large": (
|
49 |
+
"configs/sam2/sam2_hiera_l.yaml",
|
50 |
+
"sam2_hiera_large.pt",
|
51 |
+
),
|
52 |
+
"facebook/sam2.1-hiera-tiny": (
|
53 |
+
"configs/sam2.1/sam2.1_hiera_t.yaml",
|
54 |
+
"sam2.1_hiera_tiny.pt",
|
55 |
+
),
|
56 |
+
"facebook/sam2.1-hiera-small": (
|
57 |
+
"configs/sam2.1/sam2.1_hiera_s.yaml",
|
58 |
+
"sam2.1_hiera_small.pt",
|
59 |
+
),
|
60 |
+
"facebook/sam2.1-hiera-base-plus": (
|
61 |
+
"configs/sam2.1/sam2.1_hiera_b+.yaml",
|
62 |
+
"sam2.1_hiera_base_plus.pt",
|
63 |
+
),
|
64 |
+
"facebook/sam2.1-hiera-large": (
|
65 |
+
"configs/sam2.1/sam2.1_hiera_l.yaml",
|
66 |
+
"sam2.1_hiera_large.pt",
|
67 |
+
),
|
68 |
+
}
|
69 |
+
|
70 |
+
|
71 |
+
def build_sam2(
|
72 |
+
config_file,
|
73 |
+
ckpt_path=None,
|
74 |
+
device="cuda",
|
75 |
+
mode="eval",
|
76 |
+
hydra_overrides_extra=[],
|
77 |
+
apply_postprocessing=True,
|
78 |
+
**kwargs,
|
79 |
+
):
|
80 |
+
|
81 |
+
if apply_postprocessing:
|
82 |
+
hydra_overrides_extra = hydra_overrides_extra.copy()
|
83 |
+
hydra_overrides_extra += [
|
84 |
+
# dynamically fall back to multi-mask if the single mask is not stable
|
85 |
+
"++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true",
|
86 |
+
"++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05",
|
87 |
+
"++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98",
|
88 |
+
]
|
89 |
+
# Read config and init model
|
90 |
+
cfg = compose(config_name=config_file, overrides=hydra_overrides_extra)
|
91 |
+
OmegaConf.resolve(cfg)
|
92 |
+
model = instantiate(cfg.model, _recursive_=True)
|
93 |
+
_load_checkpoint(model, ckpt_path)
|
94 |
+
model = model.to(device)
|
95 |
+
if mode == "eval":
|
96 |
+
model.eval()
|
97 |
+
return model
|
98 |
+
|
99 |
+
|
100 |
+
def build_sam2_video_predictor(
|
101 |
+
config_file,
|
102 |
+
ckpt_path=None,
|
103 |
+
device="cuda",
|
104 |
+
mode="eval",
|
105 |
+
hydra_overrides_extra=[],
|
106 |
+
apply_postprocessing=True,
|
107 |
+
vos_optimized=False,
|
108 |
+
**kwargs,
|
109 |
+
):
|
110 |
+
hydra_overrides = [
|
111 |
+
"++model._target_=sam2.sam2_video_predictor.SAM2VideoPredictor",
|
112 |
+
]
|
113 |
+
if vos_optimized:
|
114 |
+
hydra_overrides = [
|
115 |
+
"++model._target_=sam2.sam2_video_predictor.SAM2VideoPredictorVOS",
|
116 |
+
"++model.compile_image_encoder=True", # Let sam2_base handle this
|
117 |
+
]
|
118 |
+
|
119 |
+
if apply_postprocessing:
|
120 |
+
hydra_overrides_extra = hydra_overrides_extra.copy()
|
121 |
+
hydra_overrides_extra += [
|
122 |
+
# dynamically fall back to multi-mask if the single mask is not stable
|
123 |
+
"++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true",
|
124 |
+
"++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05",
|
125 |
+
"++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98",
|
126 |
+
# the sigmoid mask logits on interacted frames with clicks in the memory encoder so that the encoded masks are exactly as what users see from clicking
|
127 |
+
"++model.binarize_mask_from_pts_for_mem_enc=true",
|
128 |
+
# fill small holes in the low-res masks up to `fill_hole_area` (before resizing them to the original video resolution)
|
129 |
+
"++model.fill_hole_area=8",
|
130 |
+
]
|
131 |
+
hydra_overrides.extend(hydra_overrides_extra)
|
132 |
+
|
133 |
+
# Read config and init model
|
134 |
+
cfg = compose(config_name=config_file, overrides=hydra_overrides)
|
135 |
+
OmegaConf.resolve(cfg)
|
136 |
+
model = instantiate(cfg.model, _recursive_=True)
|
137 |
+
_load_checkpoint(model, ckpt_path)
|
138 |
+
model = model.to(device)
|
139 |
+
if mode == "eval":
|
140 |
+
model.eval()
|
141 |
+
return model
|
142 |
+
|
143 |
+
|
144 |
+
def _hf_download(model_id):
|
145 |
+
from huggingface_hub import hf_hub_download
|
146 |
+
|
147 |
+
config_name, checkpoint_name = HF_MODEL_ID_TO_FILENAMES[model_id]
|
148 |
+
ckpt_path = hf_hub_download(repo_id=model_id, filename=checkpoint_name)
|
149 |
+
return config_name, ckpt_path
|
150 |
+
|
151 |
+
|
152 |
+
def build_sam2_hf(model_id, **kwargs):
|
153 |
+
config_name, ckpt_path = _hf_download(model_id)
|
154 |
+
return build_sam2(config_file=config_name, ckpt_path=ckpt_path, **kwargs)
|
155 |
+
|
156 |
+
|
157 |
+
def build_sam2_video_predictor_hf(model_id, **kwargs):
|
158 |
+
config_name, ckpt_path = _hf_download(model_id)
|
159 |
+
return build_sam2_video_predictor(
|
160 |
+
config_file=config_name, ckpt_path=ckpt_path, **kwargs
|
161 |
+
)
|
162 |
+
|
163 |
+
|
164 |
+
def _load_checkpoint(model, ckpt_path):
|
165 |
+
if ckpt_path is not None:
|
166 |
+
sd = torch.load(ckpt_path, map_location="cpu", weights_only=False)["model"]
|
167 |
+
missing_keys, unexpected_keys = model.load_state_dict(sd)
|
168 |
+
if missing_keys:
|
169 |
+
logging.error(missing_keys)
|
170 |
+
raise RuntimeError()
|
171 |
+
if unexpected_keys:
|
172 |
+
logging.error(unexpected_keys)
|
173 |
+
raise RuntimeError()
|
174 |
+
logging.info("Loaded checkpoint sucessfully")
|
sam2/configs/sam2.1/sam2.1_hiera_b+.yaml
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
# Model
|
4 |
+
model:
|
5 |
+
_target_: sam2.modeling.sam2_base.SAM2Base
|
6 |
+
image_encoder:
|
7 |
+
_target_: sam2.modeling.backbones.image_encoder.ImageEncoder
|
8 |
+
scalp: 1
|
9 |
+
trunk:
|
10 |
+
_target_: sam2.modeling.backbones.hieradet.Hiera
|
11 |
+
embed_dim: 112
|
12 |
+
num_heads: 2
|
13 |
+
neck:
|
14 |
+
_target_: sam2.modeling.backbones.image_encoder.FpnNeck
|
15 |
+
position_encoding:
|
16 |
+
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
17 |
+
num_pos_feats: 256
|
18 |
+
normalize: true
|
19 |
+
scale: null
|
20 |
+
temperature: 10000
|
21 |
+
d_model: 256
|
22 |
+
backbone_channel_list: [896, 448, 224, 112]
|
23 |
+
fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
|
24 |
+
fpn_interp_model: nearest
|
25 |
+
|
26 |
+
memory_attention:
|
27 |
+
_target_: sam2.modeling.memory_attention.MemoryAttention
|
28 |
+
d_model: 256
|
29 |
+
pos_enc_at_input: true
|
30 |
+
layer:
|
31 |
+
_target_: sam2.modeling.memory_attention.MemoryAttentionLayer
|
32 |
+
activation: relu
|
33 |
+
dim_feedforward: 2048
|
34 |
+
dropout: 0.1
|
35 |
+
pos_enc_at_attn: false
|
36 |
+
self_attention:
|
37 |
+
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
38 |
+
rope_theta: 10000.0
|
39 |
+
feat_sizes: [64, 64]
|
40 |
+
embedding_dim: 256
|
41 |
+
num_heads: 1
|
42 |
+
downsample_rate: 1
|
43 |
+
dropout: 0.1
|
44 |
+
d_model: 256
|
45 |
+
pos_enc_at_cross_attn_keys: true
|
46 |
+
pos_enc_at_cross_attn_queries: false
|
47 |
+
cross_attention:
|
48 |
+
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
49 |
+
rope_theta: 10000.0
|
50 |
+
feat_sizes: [64, 64]
|
51 |
+
rope_k_repeat: True
|
52 |
+
embedding_dim: 256
|
53 |
+
num_heads: 1
|
54 |
+
downsample_rate: 1
|
55 |
+
dropout: 0.1
|
56 |
+
kv_in_dim: 64
|
57 |
+
num_layers: 4
|
58 |
+
|
59 |
+
memory_encoder:
|
60 |
+
_target_: sam2.modeling.memory_encoder.MemoryEncoder
|
61 |
+
out_dim: 64
|
62 |
+
position_encoding:
|
63 |
+
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
64 |
+
num_pos_feats: 64
|
65 |
+
normalize: true
|
66 |
+
scale: null
|
67 |
+
temperature: 10000
|
68 |
+
mask_downsampler:
|
69 |
+
_target_: sam2.modeling.memory_encoder.MaskDownSampler
|
70 |
+
kernel_size: 3
|
71 |
+
stride: 2
|
72 |
+
padding: 1
|
73 |
+
fuser:
|
74 |
+
_target_: sam2.modeling.memory_encoder.Fuser
|
75 |
+
layer:
|
76 |
+
_target_: sam2.modeling.memory_encoder.CXBlock
|
77 |
+
dim: 256
|
78 |
+
kernel_size: 7
|
79 |
+
padding: 3
|
80 |
+
layer_scale_init_value: 1e-6
|
81 |
+
use_dwconv: True # depth-wise convs
|
82 |
+
num_layers: 2
|
83 |
+
|
84 |
+
num_maskmem: 7
|
85 |
+
image_size: 1024
|
86 |
+
# apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
|
87 |
+
sigmoid_scale_for_mem_enc: 20.0
|
88 |
+
sigmoid_bias_for_mem_enc: -10.0
|
89 |
+
use_mask_input_as_output_without_sam: true
|
90 |
+
# Memory
|
91 |
+
directly_add_no_mem_embed: true
|
92 |
+
no_obj_embed_spatial: true
|
93 |
+
# use high-resolution feature map in the SAM mask decoder
|
94 |
+
use_high_res_features_in_sam: true
|
95 |
+
# output 3 masks on the first click on initial conditioning frames
|
96 |
+
multimask_output_in_sam: true
|
97 |
+
# SAM heads
|
98 |
+
iou_prediction_use_sigmoid: True
|
99 |
+
# cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
100 |
+
use_obj_ptrs_in_encoder: true
|
101 |
+
add_tpos_enc_to_obj_ptrs: true
|
102 |
+
proj_tpos_enc_in_obj_ptrs: true
|
103 |
+
use_signed_tpos_enc_to_obj_ptrs: true
|
104 |
+
only_obj_ptrs_in_the_past_for_eval: true
|
105 |
+
# object occlusion prediction
|
106 |
+
pred_obj_scores: true
|
107 |
+
pred_obj_scores_mlp: true
|
108 |
+
fixed_no_obj_ptr: true
|
109 |
+
# multimask tracking settings
|
110 |
+
multimask_output_for_tracking: true
|
111 |
+
use_multimask_token_for_obj_ptr: true
|
112 |
+
multimask_min_pt_num: 0
|
113 |
+
multimask_max_pt_num: 1
|
114 |
+
use_mlp_for_obj_ptr_proj: true
|
115 |
+
# Compilation flag
|
116 |
+
compile_image_encoder: False
|
sam2/configs/sam2.1/sam2.1_hiera_l.yaml
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
# Model
|
4 |
+
model:
|
5 |
+
_target_: sam2.modeling.sam2_base.SAM2Base
|
6 |
+
image_encoder:
|
7 |
+
_target_: sam2.modeling.backbones.image_encoder.ImageEncoder
|
8 |
+
scalp: 1
|
9 |
+
trunk:
|
10 |
+
_target_: sam2.modeling.backbones.hieradet.Hiera
|
11 |
+
embed_dim: 144
|
12 |
+
num_heads: 2
|
13 |
+
stages: [2, 6, 36, 4]
|
14 |
+
global_att_blocks: [23, 33, 43]
|
15 |
+
window_pos_embed_bkg_spatial_size: [7, 7]
|
16 |
+
window_spec: [8, 4, 16, 8]
|
17 |
+
neck:
|
18 |
+
_target_: sam2.modeling.backbones.image_encoder.FpnNeck
|
19 |
+
position_encoding:
|
20 |
+
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
21 |
+
num_pos_feats: 256
|
22 |
+
normalize: true
|
23 |
+
scale: null
|
24 |
+
temperature: 10000
|
25 |
+
d_model: 256
|
26 |
+
backbone_channel_list: [1152, 576, 288, 144]
|
27 |
+
fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
|
28 |
+
fpn_interp_model: nearest
|
29 |
+
|
30 |
+
memory_attention:
|
31 |
+
_target_: sam2.modeling.memory_attention.MemoryAttention
|
32 |
+
d_model: 256
|
33 |
+
pos_enc_at_input: true
|
34 |
+
layer:
|
35 |
+
_target_: sam2.modeling.memory_attention.MemoryAttentionLayer
|
36 |
+
activation: relu
|
37 |
+
dim_feedforward: 2048
|
38 |
+
dropout: 0.1
|
39 |
+
pos_enc_at_attn: false
|
40 |
+
self_attention:
|
41 |
+
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
42 |
+
rope_theta: 10000.0
|
43 |
+
feat_sizes: [64, 64]
|
44 |
+
embedding_dim: 256
|
45 |
+
num_heads: 1
|
46 |
+
downsample_rate: 1
|
47 |
+
dropout: 0.1
|
48 |
+
d_model: 256
|
49 |
+
pos_enc_at_cross_attn_keys: true
|
50 |
+
pos_enc_at_cross_attn_queries: false
|
51 |
+
cross_attention:
|
52 |
+
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
53 |
+
rope_theta: 10000.0
|
54 |
+
feat_sizes: [64, 64]
|
55 |
+
rope_k_repeat: True
|
56 |
+
embedding_dim: 256
|
57 |
+
num_heads: 1
|
58 |
+
downsample_rate: 1
|
59 |
+
dropout: 0.1
|
60 |
+
kv_in_dim: 64
|
61 |
+
num_layers: 4
|
62 |
+
|
63 |
+
memory_encoder:
|
64 |
+
_target_: sam2.modeling.memory_encoder.MemoryEncoder
|
65 |
+
out_dim: 64
|
66 |
+
position_encoding:
|
67 |
+
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
68 |
+
num_pos_feats: 64
|
69 |
+
normalize: true
|
70 |
+
scale: null
|
71 |
+
temperature: 10000
|
72 |
+
mask_downsampler:
|
73 |
+
_target_: sam2.modeling.memory_encoder.MaskDownSampler
|
74 |
+
kernel_size: 3
|
75 |
+
stride: 2
|
76 |
+
padding: 1
|
77 |
+
fuser:
|
78 |
+
_target_: sam2.modeling.memory_encoder.Fuser
|
79 |
+
layer:
|
80 |
+
_target_: sam2.modeling.memory_encoder.CXBlock
|
81 |
+
dim: 256
|
82 |
+
kernel_size: 7
|
83 |
+
padding: 3
|
84 |
+
layer_scale_init_value: 1e-6
|
85 |
+
use_dwconv: True # depth-wise convs
|
86 |
+
num_layers: 2
|
87 |
+
|
88 |
+
num_maskmem: 7
|
89 |
+
image_size: 1024
|
90 |
+
# apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
|
91 |
+
sigmoid_scale_for_mem_enc: 20.0
|
92 |
+
sigmoid_bias_for_mem_enc: -10.0
|
93 |
+
use_mask_input_as_output_without_sam: true
|
94 |
+
# Memory
|
95 |
+
directly_add_no_mem_embed: true
|
96 |
+
no_obj_embed_spatial: true
|
97 |
+
# use high-resolution feature map in the SAM mask decoder
|
98 |
+
use_high_res_features_in_sam: true
|
99 |
+
# output 3 masks on the first click on initial conditioning frames
|
100 |
+
multimask_output_in_sam: true
|
101 |
+
# SAM heads
|
102 |
+
iou_prediction_use_sigmoid: True
|
103 |
+
# cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
104 |
+
use_obj_ptrs_in_encoder: true
|
105 |
+
add_tpos_enc_to_obj_ptrs: true
|
106 |
+
proj_tpos_enc_in_obj_ptrs: true
|
107 |
+
use_signed_tpos_enc_to_obj_ptrs: true
|
108 |
+
only_obj_ptrs_in_the_past_for_eval: true
|
109 |
+
# object occlusion prediction
|
110 |
+
pred_obj_scores: true
|
111 |
+
pred_obj_scores_mlp: true
|
112 |
+
fixed_no_obj_ptr: true
|
113 |
+
# multimask tracking settings
|
114 |
+
multimask_output_for_tracking: true
|
115 |
+
use_multimask_token_for_obj_ptr: true
|
116 |
+
multimask_min_pt_num: 0
|
117 |
+
multimask_max_pt_num: 1
|
118 |
+
use_mlp_for_obj_ptr_proj: true
|
119 |
+
# Compilation flag
|
120 |
+
compile_image_encoder: False
|
sam2/configs/sam2.1/sam2.1_hiera_s.yaml
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
# Model
|
4 |
+
model:
|
5 |
+
_target_: sam2.modeling.sam2_base.SAM2Base
|
6 |
+
image_encoder:
|
7 |
+
_target_: sam2.modeling.backbones.image_encoder.ImageEncoder
|
8 |
+
scalp: 1
|
9 |
+
trunk:
|
10 |
+
_target_: sam2.modeling.backbones.hieradet.Hiera
|
11 |
+
embed_dim: 96
|
12 |
+
num_heads: 1
|
13 |
+
stages: [1, 2, 11, 2]
|
14 |
+
global_att_blocks: [7, 10, 13]
|
15 |
+
window_pos_embed_bkg_spatial_size: [7, 7]
|
16 |
+
neck:
|
17 |
+
_target_: sam2.modeling.backbones.image_encoder.FpnNeck
|
18 |
+
position_encoding:
|
19 |
+
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
20 |
+
num_pos_feats: 256
|
21 |
+
normalize: true
|
22 |
+
scale: null
|
23 |
+
temperature: 10000
|
24 |
+
d_model: 256
|
25 |
+
backbone_channel_list: [768, 384, 192, 96]
|
26 |
+
fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
|
27 |
+
fpn_interp_model: nearest
|
28 |
+
|
29 |
+
memory_attention:
|
30 |
+
_target_: sam2.modeling.memory_attention.MemoryAttention
|
31 |
+
d_model: 256
|
32 |
+
pos_enc_at_input: true
|
33 |
+
layer:
|
34 |
+
_target_: sam2.modeling.memory_attention.MemoryAttentionLayer
|
35 |
+
activation: relu
|
36 |
+
dim_feedforward: 2048
|
37 |
+
dropout: 0.1
|
38 |
+
pos_enc_at_attn: false
|
39 |
+
self_attention:
|
40 |
+
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
41 |
+
rope_theta: 10000.0
|
42 |
+
feat_sizes: [64, 64]
|
43 |
+
embedding_dim: 256
|
44 |
+
num_heads: 1
|
45 |
+
downsample_rate: 1
|
46 |
+
dropout: 0.1
|
47 |
+
d_model: 256
|
48 |
+
pos_enc_at_cross_attn_keys: true
|
49 |
+
pos_enc_at_cross_attn_queries: false
|
50 |
+
cross_attention:
|
51 |
+
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
52 |
+
rope_theta: 10000.0
|
53 |
+
feat_sizes: [64, 64]
|
54 |
+
rope_k_repeat: True
|
55 |
+
embedding_dim: 256
|
56 |
+
num_heads: 1
|
57 |
+
downsample_rate: 1
|
58 |
+
dropout: 0.1
|
59 |
+
kv_in_dim: 64
|
60 |
+
num_layers: 4
|
61 |
+
|
62 |
+
memory_encoder:
|
63 |
+
_target_: sam2.modeling.memory_encoder.MemoryEncoder
|
64 |
+
out_dim: 64
|
65 |
+
position_encoding:
|
66 |
+
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
67 |
+
num_pos_feats: 64
|
68 |
+
normalize: true
|
69 |
+
scale: null
|
70 |
+
temperature: 10000
|
71 |
+
mask_downsampler:
|
72 |
+
_target_: sam2.modeling.memory_encoder.MaskDownSampler
|
73 |
+
kernel_size: 3
|
74 |
+
stride: 2
|
75 |
+
padding: 1
|
76 |
+
fuser:
|
77 |
+
_target_: sam2.modeling.memory_encoder.Fuser
|
78 |
+
layer:
|
79 |
+
_target_: sam2.modeling.memory_encoder.CXBlock
|
80 |
+
dim: 256
|
81 |
+
kernel_size: 7
|
82 |
+
padding: 3
|
83 |
+
layer_scale_init_value: 1e-6
|
84 |
+
use_dwconv: True # depth-wise convs
|
85 |
+
num_layers: 2
|
86 |
+
|
87 |
+
num_maskmem: 7
|
88 |
+
image_size: 1024
|
89 |
+
# apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
|
90 |
+
sigmoid_scale_for_mem_enc: 20.0
|
91 |
+
sigmoid_bias_for_mem_enc: -10.0
|
92 |
+
use_mask_input_as_output_without_sam: true
|
93 |
+
# Memory
|
94 |
+
directly_add_no_mem_embed: true
|
95 |
+
no_obj_embed_spatial: true
|
96 |
+
# use high-resolution feature map in the SAM mask decoder
|
97 |
+
use_high_res_features_in_sam: true
|
98 |
+
# output 3 masks on the first click on initial conditioning frames
|
99 |
+
multimask_output_in_sam: true
|
100 |
+
# SAM heads
|
101 |
+
iou_prediction_use_sigmoid: True
|
102 |
+
# cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
103 |
+
use_obj_ptrs_in_encoder: true
|
104 |
+
add_tpos_enc_to_obj_ptrs: true
|
105 |
+
proj_tpos_enc_in_obj_ptrs: true
|
106 |
+
use_signed_tpos_enc_to_obj_ptrs: true
|
107 |
+
only_obj_ptrs_in_the_past_for_eval: true
|
108 |
+
# object occlusion prediction
|
109 |
+
pred_obj_scores: true
|
110 |
+
pred_obj_scores_mlp: true
|
111 |
+
fixed_no_obj_ptr: true
|
112 |
+
# multimask tracking settings
|
113 |
+
multimask_output_for_tracking: true
|
114 |
+
use_multimask_token_for_obj_ptr: true
|
115 |
+
multimask_min_pt_num: 0
|
116 |
+
multimask_max_pt_num: 1
|
117 |
+
use_mlp_for_obj_ptr_proj: true
|
118 |
+
# Compilation flag
|
119 |
+
compile_image_encoder: False
|
sam2/configs/sam2.1/sam2.1_hiera_t.yaml
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
# Model
|
4 |
+
model:
|
5 |
+
_target_: sam2.modeling.sam2_base.SAM2Base
|
6 |
+
image_encoder:
|
7 |
+
_target_: sam2.modeling.backbones.image_encoder.ImageEncoder
|
8 |
+
scalp: 1
|
9 |
+
trunk:
|
10 |
+
_target_: sam2.modeling.backbones.hieradet.Hiera
|
11 |
+
embed_dim: 96
|
12 |
+
num_heads: 1
|
13 |
+
stages: [1, 2, 7, 2]
|
14 |
+
global_att_blocks: [5, 7, 9]
|
15 |
+
window_pos_embed_bkg_spatial_size: [7, 7]
|
16 |
+
neck:
|
17 |
+
_target_: sam2.modeling.backbones.image_encoder.FpnNeck
|
18 |
+
position_encoding:
|
19 |
+
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
20 |
+
num_pos_feats: 256
|
21 |
+
normalize: true
|
22 |
+
scale: null
|
23 |
+
temperature: 10000
|
24 |
+
d_model: 256
|
25 |
+
backbone_channel_list: [768, 384, 192, 96]
|
26 |
+
fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
|
27 |
+
fpn_interp_model: nearest
|
28 |
+
|
29 |
+
memory_attention:
|
30 |
+
_target_: sam2.modeling.memory_attention.MemoryAttention
|
31 |
+
d_model: 256
|
32 |
+
pos_enc_at_input: true
|
33 |
+
layer:
|
34 |
+
_target_: sam2.modeling.memory_attention.MemoryAttentionLayer
|
35 |
+
activation: relu
|
36 |
+
dim_feedforward: 2048
|
37 |
+
dropout: 0.1
|
38 |
+
pos_enc_at_attn: false
|
39 |
+
self_attention:
|
40 |
+
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
41 |
+
rope_theta: 10000.0
|
42 |
+
feat_sizes: [64, 64]
|
43 |
+
embedding_dim: 256
|
44 |
+
num_heads: 1
|
45 |
+
downsample_rate: 1
|
46 |
+
dropout: 0.1
|
47 |
+
d_model: 256
|
48 |
+
pos_enc_at_cross_attn_keys: true
|
49 |
+
pos_enc_at_cross_attn_queries: false
|
50 |
+
cross_attention:
|
51 |
+
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
52 |
+
rope_theta: 10000.0
|
53 |
+
feat_sizes: [64, 64]
|
54 |
+
rope_k_repeat: True
|
55 |
+
embedding_dim: 256
|
56 |
+
num_heads: 1
|
57 |
+
downsample_rate: 1
|
58 |
+
dropout: 0.1
|
59 |
+
kv_in_dim: 64
|
60 |
+
num_layers: 4
|
61 |
+
|
62 |
+
memory_encoder:
|
63 |
+
_target_: sam2.modeling.memory_encoder.MemoryEncoder
|
64 |
+
out_dim: 64
|
65 |
+
position_encoding:
|
66 |
+
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
67 |
+
num_pos_feats: 64
|
68 |
+
normalize: true
|
69 |
+
scale: null
|
70 |
+
temperature: 10000
|
71 |
+
mask_downsampler:
|
72 |
+
_target_: sam2.modeling.memory_encoder.MaskDownSampler
|
73 |
+
kernel_size: 3
|
74 |
+
stride: 2
|
75 |
+
padding: 1
|
76 |
+
fuser:
|
77 |
+
_target_: sam2.modeling.memory_encoder.Fuser
|
78 |
+
layer:
|
79 |
+
_target_: sam2.modeling.memory_encoder.CXBlock
|
80 |
+
dim: 256
|
81 |
+
kernel_size: 7
|
82 |
+
padding: 3
|
83 |
+
layer_scale_init_value: 1e-6
|
84 |
+
use_dwconv: True # depth-wise convs
|
85 |
+
num_layers: 2
|
86 |
+
|
87 |
+
num_maskmem: 7
|
88 |
+
image_size: 1024
|
89 |
+
# apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
|
90 |
+
# SAM decoder
|
91 |
+
sigmoid_scale_for_mem_enc: 20.0
|
92 |
+
sigmoid_bias_for_mem_enc: -10.0
|
93 |
+
use_mask_input_as_output_without_sam: true
|
94 |
+
# Memory
|
95 |
+
directly_add_no_mem_embed: true
|
96 |
+
no_obj_embed_spatial: true
|
97 |
+
# use high-resolution feature map in the SAM mask decoder
|
98 |
+
use_high_res_features_in_sam: true
|
99 |
+
# output 3 masks on the first click on initial conditioning frames
|
100 |
+
multimask_output_in_sam: true
|
101 |
+
# SAM heads
|
102 |
+
iou_prediction_use_sigmoid: True
|
103 |
+
# cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
104 |
+
use_obj_ptrs_in_encoder: true
|
105 |
+
add_tpos_enc_to_obj_ptrs: true
|
106 |
+
proj_tpos_enc_in_obj_ptrs: true
|
107 |
+
use_signed_tpos_enc_to_obj_ptrs: true
|
108 |
+
only_obj_ptrs_in_the_past_for_eval: true
|
109 |
+
# object occlusion prediction
|
110 |
+
pred_obj_scores: true
|
111 |
+
pred_obj_scores_mlp: true
|
112 |
+
fixed_no_obj_ptr: true
|
113 |
+
# multimask tracking settings
|
114 |
+
multimask_output_for_tracking: true
|
115 |
+
use_multimask_token_for_obj_ptr: true
|
116 |
+
multimask_min_pt_num: 0
|
117 |
+
multimask_max_pt_num: 1
|
118 |
+
use_mlp_for_obj_ptr_proj: true
|
119 |
+
# Compilation flag
|
120 |
+
# HieraT does not currently support compilation, should always be set to False
|
121 |
+
compile_image_encoder: False
|
sam2/configs/sam2.1_training/sam2.1_hiera_b+_MOSE_finetune.yaml
ADDED
@@ -0,0 +1,339 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
scratch:
|
4 |
+
resolution: 1024
|
5 |
+
train_batch_size: 1
|
6 |
+
num_train_workers: 10
|
7 |
+
num_frames: 8
|
8 |
+
max_num_objects: 3
|
9 |
+
base_lr: 5.0e-6
|
10 |
+
vision_lr: 3.0e-06
|
11 |
+
phases_per_epoch: 1
|
12 |
+
num_epochs: 40
|
13 |
+
|
14 |
+
dataset:
|
15 |
+
# PATHS to Dataset
|
16 |
+
img_folder: null # PATH to MOSE JPEGImages folder
|
17 |
+
gt_folder: null # PATH to MOSE Annotations folder
|
18 |
+
file_list_txt: training/assets/MOSE_sample_train_list.txt # Optional PATH to filelist containing a subset of videos to be used for training
|
19 |
+
multiplier: 2
|
20 |
+
|
21 |
+
# Video transforms
|
22 |
+
vos:
|
23 |
+
train_transforms:
|
24 |
+
- _target_: training.dataset.transforms.ComposeAPI
|
25 |
+
transforms:
|
26 |
+
- _target_: training.dataset.transforms.RandomHorizontalFlip
|
27 |
+
consistent_transform: True
|
28 |
+
- _target_: training.dataset.transforms.RandomAffine
|
29 |
+
degrees: 25
|
30 |
+
shear: 20
|
31 |
+
image_interpolation: bilinear
|
32 |
+
consistent_transform: True
|
33 |
+
- _target_: training.dataset.transforms.RandomResizeAPI
|
34 |
+
sizes: ${scratch.resolution}
|
35 |
+
square: true
|
36 |
+
consistent_transform: True
|
37 |
+
- _target_: training.dataset.transforms.ColorJitter
|
38 |
+
consistent_transform: True
|
39 |
+
brightness: 0.1
|
40 |
+
contrast: 0.03
|
41 |
+
saturation: 0.03
|
42 |
+
hue: null
|
43 |
+
- _target_: training.dataset.transforms.RandomGrayscale
|
44 |
+
p: 0.05
|
45 |
+
consistent_transform: True
|
46 |
+
- _target_: training.dataset.transforms.ColorJitter
|
47 |
+
consistent_transform: False
|
48 |
+
brightness: 0.1
|
49 |
+
contrast: 0.05
|
50 |
+
saturation: 0.05
|
51 |
+
hue: null
|
52 |
+
- _target_: training.dataset.transforms.ToTensorAPI
|
53 |
+
- _target_: training.dataset.transforms.NormalizeAPI
|
54 |
+
mean: [0.485, 0.456, 0.406]
|
55 |
+
std: [0.229, 0.224, 0.225]
|
56 |
+
|
57 |
+
trainer:
|
58 |
+
_target_: training.trainer.Trainer
|
59 |
+
mode: train_only
|
60 |
+
max_epochs: ${times:${scratch.num_epochs},${scratch.phases_per_epoch}}
|
61 |
+
accelerator: cuda
|
62 |
+
seed_value: 123
|
63 |
+
|
64 |
+
model:
|
65 |
+
_target_: training.model.sam2.SAM2Train
|
66 |
+
image_encoder:
|
67 |
+
_target_: sam2.modeling.backbones.image_encoder.ImageEncoder
|
68 |
+
scalp: 1
|
69 |
+
trunk:
|
70 |
+
_target_: sam2.modeling.backbones.hieradet.Hiera
|
71 |
+
embed_dim: 112
|
72 |
+
num_heads: 2
|
73 |
+
drop_path_rate: 0.1
|
74 |
+
neck:
|
75 |
+
_target_: sam2.modeling.backbones.image_encoder.FpnNeck
|
76 |
+
position_encoding:
|
77 |
+
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
78 |
+
num_pos_feats: 256
|
79 |
+
normalize: true
|
80 |
+
scale: null
|
81 |
+
temperature: 10000
|
82 |
+
d_model: 256
|
83 |
+
backbone_channel_list: [896, 448, 224, 112]
|
84 |
+
fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
|
85 |
+
fpn_interp_model: nearest
|
86 |
+
|
87 |
+
memory_attention:
|
88 |
+
_target_: sam2.modeling.memory_attention.MemoryAttention
|
89 |
+
d_model: 256
|
90 |
+
pos_enc_at_input: true
|
91 |
+
layer:
|
92 |
+
_target_: sam2.modeling.memory_attention.MemoryAttentionLayer
|
93 |
+
activation: relu
|
94 |
+
dim_feedforward: 2048
|
95 |
+
dropout: 0.1
|
96 |
+
pos_enc_at_attn: false
|
97 |
+
self_attention:
|
98 |
+
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
99 |
+
rope_theta: 10000.0
|
100 |
+
feat_sizes: [64, 64]
|
101 |
+
embedding_dim: 256
|
102 |
+
num_heads: 1
|
103 |
+
downsample_rate: 1
|
104 |
+
dropout: 0.1
|
105 |
+
d_model: 256
|
106 |
+
pos_enc_at_cross_attn_keys: true
|
107 |
+
pos_enc_at_cross_attn_queries: false
|
108 |
+
cross_attention:
|
109 |
+
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
110 |
+
rope_theta: 10000.0
|
111 |
+
feat_sizes: [64, 64]
|
112 |
+
rope_k_repeat: True
|
113 |
+
embedding_dim: 256
|
114 |
+
num_heads: 1
|
115 |
+
downsample_rate: 1
|
116 |
+
dropout: 0.1
|
117 |
+
kv_in_dim: 64
|
118 |
+
num_layers: 4
|
119 |
+
|
120 |
+
memory_encoder:
|
121 |
+
_target_: sam2.modeling.memory_encoder.MemoryEncoder
|
122 |
+
out_dim: 64
|
123 |
+
position_encoding:
|
124 |
+
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
125 |
+
num_pos_feats: 64
|
126 |
+
normalize: true
|
127 |
+
scale: null
|
128 |
+
temperature: 10000
|
129 |
+
mask_downsampler:
|
130 |
+
_target_: sam2.modeling.memory_encoder.MaskDownSampler
|
131 |
+
kernel_size: 3
|
132 |
+
stride: 2
|
133 |
+
padding: 1
|
134 |
+
fuser:
|
135 |
+
_target_: sam2.modeling.memory_encoder.Fuser
|
136 |
+
layer:
|
137 |
+
_target_: sam2.modeling.memory_encoder.CXBlock
|
138 |
+
dim: 256
|
139 |
+
kernel_size: 7
|
140 |
+
padding: 3
|
141 |
+
layer_scale_init_value: 1e-6
|
142 |
+
use_dwconv: True # depth-wise convs
|
143 |
+
num_layers: 2
|
144 |
+
|
145 |
+
num_maskmem: 7
|
146 |
+
image_size: ${scratch.resolution}
|
147 |
+
# apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
|
148 |
+
sigmoid_scale_for_mem_enc: 20.0
|
149 |
+
sigmoid_bias_for_mem_enc: -10.0
|
150 |
+
use_mask_input_as_output_without_sam: true
|
151 |
+
# Memory
|
152 |
+
directly_add_no_mem_embed: true
|
153 |
+
no_obj_embed_spatial: true
|
154 |
+
# use high-resolution feature map in the SAM mask decoder
|
155 |
+
use_high_res_features_in_sam: true
|
156 |
+
# output 3 masks on the first click on initial conditioning frames
|
157 |
+
multimask_output_in_sam: true
|
158 |
+
# SAM heads
|
159 |
+
iou_prediction_use_sigmoid: True
|
160 |
+
# cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
161 |
+
use_obj_ptrs_in_encoder: true
|
162 |
+
add_tpos_enc_to_obj_ptrs: true
|
163 |
+
proj_tpos_enc_in_obj_ptrs: true
|
164 |
+
use_signed_tpos_enc_to_obj_ptrs: true
|
165 |
+
only_obj_ptrs_in_the_past_for_eval: true
|
166 |
+
# object occlusion prediction
|
167 |
+
pred_obj_scores: true
|
168 |
+
pred_obj_scores_mlp: true
|
169 |
+
fixed_no_obj_ptr: true
|
170 |
+
# multimask tracking settings
|
171 |
+
multimask_output_for_tracking: true
|
172 |
+
use_multimask_token_for_obj_ptr: true
|
173 |
+
multimask_min_pt_num: 0
|
174 |
+
multimask_max_pt_num: 1
|
175 |
+
use_mlp_for_obj_ptr_proj: true
|
176 |
+
# Compilation flag
|
177 |
+
# compile_image_encoder: False
|
178 |
+
|
179 |
+
####### Training specific params #######
|
180 |
+
# box/point input and corrections
|
181 |
+
prob_to_use_pt_input_for_train: 0.5
|
182 |
+
prob_to_use_pt_input_for_eval: 0.0
|
183 |
+
prob_to_use_box_input_for_train: 0.5 # 0.5*0.5 = 0.25 prob to use box instead of points
|
184 |
+
prob_to_use_box_input_for_eval: 0.0
|
185 |
+
prob_to_sample_from_gt_for_train: 0.1 # with a small prob, sampling correction points from GT mask instead of prediction errors
|
186 |
+
num_frames_to_correct_for_train: 2 # iteratively sample on random 1~2 frames (always include the first frame)
|
187 |
+
num_frames_to_correct_for_eval: 1 # only iteratively sample on first frame
|
188 |
+
rand_frames_to_correct_for_train: True # random #init-cond-frame ~ 2
|
189 |
+
add_all_frames_to_correct_as_cond: True # when a frame receives a correction click, it becomes a conditioning frame (even if it's not initially a conditioning frame)
|
190 |
+
# maximum 2 initial conditioning frames
|
191 |
+
num_init_cond_frames_for_train: 2
|
192 |
+
rand_init_cond_frames_for_train: True # random 1~2
|
193 |
+
num_correction_pt_per_frame: 7
|
194 |
+
use_act_ckpt_iterative_pt_sampling: false
|
195 |
+
|
196 |
+
|
197 |
+
|
198 |
+
num_init_cond_frames_for_eval: 1 # only mask on the first frame
|
199 |
+
forward_backbone_per_frame_for_eval: True
|
200 |
+
|
201 |
+
|
202 |
+
data:
|
203 |
+
train:
|
204 |
+
_target_: training.dataset.sam2_datasets.TorchTrainMixedDataset
|
205 |
+
phases_per_epoch: ${scratch.phases_per_epoch}
|
206 |
+
batch_sizes:
|
207 |
+
- ${scratch.train_batch_size}
|
208 |
+
|
209 |
+
datasets:
|
210 |
+
- _target_: training.dataset.utils.RepeatFactorWrapper
|
211 |
+
dataset:
|
212 |
+
_target_: training.dataset.utils.ConcatDataset
|
213 |
+
datasets:
|
214 |
+
- _target_: training.dataset.vos_dataset.VOSDataset
|
215 |
+
transforms: ${vos.train_transforms}
|
216 |
+
training: true
|
217 |
+
video_dataset:
|
218 |
+
_target_: training.dataset.vos_raw_dataset.PNGRawDataset
|
219 |
+
img_folder: ${dataset.img_folder}
|
220 |
+
gt_folder: ${dataset.gt_folder}
|
221 |
+
file_list_txt: ${dataset.file_list_txt}
|
222 |
+
sampler:
|
223 |
+
_target_: training.dataset.vos_sampler.RandomUniformSampler
|
224 |
+
num_frames: ${scratch.num_frames}
|
225 |
+
max_num_objects: ${scratch.max_num_objects}
|
226 |
+
multiplier: ${dataset.multiplier}
|
227 |
+
shuffle: True
|
228 |
+
num_workers: ${scratch.num_train_workers}
|
229 |
+
pin_memory: True
|
230 |
+
drop_last: True
|
231 |
+
collate_fn:
|
232 |
+
_target_: training.utils.data_utils.collate_fn
|
233 |
+
_partial_: true
|
234 |
+
dict_key: all
|
235 |
+
|
236 |
+
optim:
|
237 |
+
amp:
|
238 |
+
enabled: True
|
239 |
+
amp_dtype: bfloat16
|
240 |
+
|
241 |
+
optimizer:
|
242 |
+
_target_: torch.optim.AdamW
|
243 |
+
|
244 |
+
gradient_clip:
|
245 |
+
_target_: training.optimizer.GradientClipper
|
246 |
+
max_norm: 0.1
|
247 |
+
norm_type: 2
|
248 |
+
|
249 |
+
param_group_modifiers:
|
250 |
+
- _target_: training.optimizer.layer_decay_param_modifier
|
251 |
+
_partial_: True
|
252 |
+
layer_decay_value: 0.9
|
253 |
+
apply_to: 'image_encoder.trunk'
|
254 |
+
overrides:
|
255 |
+
- pattern: '*pos_embed*'
|
256 |
+
value: 1.0
|
257 |
+
|
258 |
+
options:
|
259 |
+
lr:
|
260 |
+
- scheduler:
|
261 |
+
_target_: fvcore.common.param_scheduler.CosineParamScheduler
|
262 |
+
start_value: ${scratch.base_lr}
|
263 |
+
end_value: ${divide:${scratch.base_lr},10}
|
264 |
+
- scheduler:
|
265 |
+
_target_: fvcore.common.param_scheduler.CosineParamScheduler
|
266 |
+
start_value: ${scratch.vision_lr}
|
267 |
+
end_value: ${divide:${scratch.vision_lr},10}
|
268 |
+
param_names:
|
269 |
+
- 'image_encoder.*'
|
270 |
+
weight_decay:
|
271 |
+
- scheduler:
|
272 |
+
_target_: fvcore.common.param_scheduler.ConstantParamScheduler
|
273 |
+
value: 0.1
|
274 |
+
- scheduler:
|
275 |
+
_target_: fvcore.common.param_scheduler.ConstantParamScheduler
|
276 |
+
value: 0.0
|
277 |
+
param_names:
|
278 |
+
- '*bias*'
|
279 |
+
module_cls_names: ['torch.nn.LayerNorm']
|
280 |
+
|
281 |
+
loss:
|
282 |
+
all:
|
283 |
+
_target_: training.loss_fns.MultiStepMultiMasksAndIous
|
284 |
+
weight_dict:
|
285 |
+
loss_mask: 20
|
286 |
+
loss_dice: 1
|
287 |
+
loss_iou: 1
|
288 |
+
loss_class: 1
|
289 |
+
supervise_all_iou: true
|
290 |
+
iou_use_l1_loss: true
|
291 |
+
pred_obj_scores: true
|
292 |
+
focal_gamma_obj_score: 0.0
|
293 |
+
focal_alpha_obj_score: -1.0
|
294 |
+
|
295 |
+
distributed:
|
296 |
+
backend: nccl
|
297 |
+
find_unused_parameters: True
|
298 |
+
|
299 |
+
logging:
|
300 |
+
tensorboard_writer:
|
301 |
+
_target_: training.utils.logger.make_tensorboard_logger
|
302 |
+
log_dir: ${launcher.experiment_log_dir}/tensorboard
|
303 |
+
flush_secs: 120
|
304 |
+
should_log: True
|
305 |
+
log_dir: ${launcher.experiment_log_dir}/logs
|
306 |
+
log_freq: 10
|
307 |
+
|
308 |
+
# initialize from a SAM 2 checkpoint
|
309 |
+
checkpoint:
|
310 |
+
save_dir: ${launcher.experiment_log_dir}/checkpoints
|
311 |
+
save_freq: 0 # 0 only last checkpoint is saved.
|
312 |
+
model_weight_initializer:
|
313 |
+
_partial_: True
|
314 |
+
_target_: training.utils.checkpoint_utils.load_state_dict_into_model
|
315 |
+
strict: True
|
316 |
+
ignore_unexpected_keys: null
|
317 |
+
ignore_missing_keys: null
|
318 |
+
|
319 |
+
state_dict:
|
320 |
+
_target_: training.utils.checkpoint_utils.load_checkpoint_and_apply_kernels
|
321 |
+
checkpoint_path: ./checkpoints/sam2.1_hiera_base_plus.pt # PATH to SAM 2.1 checkpoint
|
322 |
+
ckpt_state_dict_keys: ['model']
|
323 |
+
|
324 |
+
launcher:
|
325 |
+
num_nodes: 1
|
326 |
+
gpus_per_node: 8
|
327 |
+
experiment_log_dir: null # Path to log directory, defaults to ./sam2_logs/${config_name}
|
328 |
+
|
329 |
+
# SLURM args if running on a cluster
|
330 |
+
submitit:
|
331 |
+
partition: null
|
332 |
+
account: null
|
333 |
+
qos: null
|
334 |
+
cpus_per_task: 10
|
335 |
+
use_cluster: false
|
336 |
+
timeout_hour: 24
|
337 |
+
name: null
|
338 |
+
port_range: [10000, 65000]
|
339 |
+
|
sam2/configs/sam2/sam2_hiera_b+.yaml
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
# Model
|
4 |
+
model:
|
5 |
+
_target_: sam2.modeling.sam2_base.SAM2Base
|
6 |
+
image_encoder:
|
7 |
+
_target_: sam2.modeling.backbones.image_encoder.ImageEncoder
|
8 |
+
scalp: 1
|
9 |
+
trunk:
|
10 |
+
_target_: sam2.modeling.backbones.hieradet.Hiera
|
11 |
+
embed_dim: 112
|
12 |
+
num_heads: 2
|
13 |
+
neck:
|
14 |
+
_target_: sam2.modeling.backbones.image_encoder.FpnNeck
|
15 |
+
position_encoding:
|
16 |
+
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
17 |
+
num_pos_feats: 256
|
18 |
+
normalize: true
|
19 |
+
scale: null
|
20 |
+
temperature: 10000
|
21 |
+
d_model: 256
|
22 |
+
backbone_channel_list: [896, 448, 224, 112]
|
23 |
+
fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
|
24 |
+
fpn_interp_model: nearest
|
25 |
+
|
26 |
+
memory_attention:
|
27 |
+
_target_: sam2.modeling.memory_attention.MemoryAttention
|
28 |
+
d_model: 256
|
29 |
+
pos_enc_at_input: true
|
30 |
+
layer:
|
31 |
+
_target_: sam2.modeling.memory_attention.MemoryAttentionLayer
|
32 |
+
activation: relu
|
33 |
+
dim_feedforward: 2048
|
34 |
+
dropout: 0.1
|
35 |
+
pos_enc_at_attn: false
|
36 |
+
self_attention:
|
37 |
+
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
38 |
+
rope_theta: 10000.0
|
39 |
+
feat_sizes: [64, 64]
|
40 |
+
embedding_dim: 256
|
41 |
+
num_heads: 1
|
42 |
+
downsample_rate: 1
|
43 |
+
dropout: 0.1
|
44 |
+
d_model: 256
|
45 |
+
pos_enc_at_cross_attn_keys: true
|
46 |
+
pos_enc_at_cross_attn_queries: false
|
47 |
+
cross_attention:
|
48 |
+
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
49 |
+
rope_theta: 10000.0
|
50 |
+
feat_sizes: [64, 64]
|
51 |
+
rope_k_repeat: True
|
52 |
+
embedding_dim: 256
|
53 |
+
num_heads: 1
|
54 |
+
downsample_rate: 1
|
55 |
+
dropout: 0.1
|
56 |
+
kv_in_dim: 64
|
57 |
+
num_layers: 4
|
58 |
+
|
59 |
+
memory_encoder:
|
60 |
+
_target_: sam2.modeling.memory_encoder.MemoryEncoder
|
61 |
+
out_dim: 64
|
62 |
+
position_encoding:
|
63 |
+
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
64 |
+
num_pos_feats: 64
|
65 |
+
normalize: true
|
66 |
+
scale: null
|
67 |
+
temperature: 10000
|
68 |
+
mask_downsampler:
|
69 |
+
_target_: sam2.modeling.memory_encoder.MaskDownSampler
|
70 |
+
kernel_size: 3
|
71 |
+
stride: 2
|
72 |
+
padding: 1
|
73 |
+
fuser:
|
74 |
+
_target_: sam2.modeling.memory_encoder.Fuser
|
75 |
+
layer:
|
76 |
+
_target_: sam2.modeling.memory_encoder.CXBlock
|
77 |
+
dim: 256
|
78 |
+
kernel_size: 7
|
79 |
+
padding: 3
|
80 |
+
layer_scale_init_value: 1e-6
|
81 |
+
use_dwconv: True # depth-wise convs
|
82 |
+
num_layers: 2
|
83 |
+
|
84 |
+
num_maskmem: 7
|
85 |
+
image_size: 1024
|
86 |
+
# apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
|
87 |
+
sigmoid_scale_for_mem_enc: 20.0
|
88 |
+
sigmoid_bias_for_mem_enc: -10.0
|
89 |
+
use_mask_input_as_output_without_sam: true
|
90 |
+
# Memory
|
91 |
+
directly_add_no_mem_embed: true
|
92 |
+
# use high-resolution feature map in the SAM mask decoder
|
93 |
+
use_high_res_features_in_sam: true
|
94 |
+
# output 3 masks on the first click on initial conditioning frames
|
95 |
+
multimask_output_in_sam: true
|
96 |
+
# SAM heads
|
97 |
+
iou_prediction_use_sigmoid: True
|
98 |
+
# cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
99 |
+
use_obj_ptrs_in_encoder: true
|
100 |
+
add_tpos_enc_to_obj_ptrs: false
|
101 |
+
only_obj_ptrs_in_the_past_for_eval: true
|
102 |
+
# object occlusion prediction
|
103 |
+
pred_obj_scores: true
|
104 |
+
pred_obj_scores_mlp: true
|
105 |
+
fixed_no_obj_ptr: true
|
106 |
+
# multimask tracking settings
|
107 |
+
multimask_output_for_tracking: true
|
108 |
+
use_multimask_token_for_obj_ptr: true
|
109 |
+
multimask_min_pt_num: 0
|
110 |
+
multimask_max_pt_num: 1
|
111 |
+
use_mlp_for_obj_ptr_proj: true
|
112 |
+
# Compilation flag
|
113 |
+
compile_image_encoder: False
|
sam2/configs/sam2/sam2_hiera_l.yaml
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
# Model
|
4 |
+
model:
|
5 |
+
_target_: sam2.modeling.sam2_base.SAM2Base
|
6 |
+
image_encoder:
|
7 |
+
_target_: sam2.modeling.backbones.image_encoder.ImageEncoder
|
8 |
+
scalp: 1
|
9 |
+
trunk:
|
10 |
+
_target_: sam2.modeling.backbones.hieradet.Hiera
|
11 |
+
embed_dim: 144
|
12 |
+
num_heads: 2
|
13 |
+
stages: [2, 6, 36, 4]
|
14 |
+
global_att_blocks: [23, 33, 43]
|
15 |
+
window_pos_embed_bkg_spatial_size: [7, 7]
|
16 |
+
window_spec: [8, 4, 16, 8]
|
17 |
+
neck:
|
18 |
+
_target_: sam2.modeling.backbones.image_encoder.FpnNeck
|
19 |
+
position_encoding:
|
20 |
+
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
21 |
+
num_pos_feats: 256
|
22 |
+
normalize: true
|
23 |
+
scale: null
|
24 |
+
temperature: 10000
|
25 |
+
d_model: 256
|
26 |
+
backbone_channel_list: [1152, 576, 288, 144]
|
27 |
+
fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
|
28 |
+
fpn_interp_model: nearest
|
29 |
+
|
30 |
+
memory_attention:
|
31 |
+
_target_: sam2.modeling.memory_attention.MemoryAttention
|
32 |
+
d_model: 256
|
33 |
+
pos_enc_at_input: true
|
34 |
+
layer:
|
35 |
+
_target_: sam2.modeling.memory_attention.MemoryAttentionLayer
|
36 |
+
activation: relu
|
37 |
+
dim_feedforward: 2048
|
38 |
+
dropout: 0.1
|
39 |
+
pos_enc_at_attn: false
|
40 |
+
self_attention:
|
41 |
+
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
42 |
+
rope_theta: 10000.0
|
43 |
+
feat_sizes: [64, 64]
|
44 |
+
embedding_dim: 256
|
45 |
+
num_heads: 1
|
46 |
+
downsample_rate: 1
|
47 |
+
dropout: 0.1
|
48 |
+
d_model: 256
|
49 |
+
pos_enc_at_cross_attn_keys: true
|
50 |
+
pos_enc_at_cross_attn_queries: false
|
51 |
+
cross_attention:
|
52 |
+
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
53 |
+
rope_theta: 10000.0
|
54 |
+
feat_sizes: [64, 64]
|
55 |
+
rope_k_repeat: True
|
56 |
+
embedding_dim: 256
|
57 |
+
num_heads: 1
|
58 |
+
downsample_rate: 1
|
59 |
+
dropout: 0.1
|
60 |
+
kv_in_dim: 64
|
61 |
+
num_layers: 4
|
62 |
+
|
63 |
+
memory_encoder:
|
64 |
+
_target_: sam2.modeling.memory_encoder.MemoryEncoder
|
65 |
+
out_dim: 64
|
66 |
+
position_encoding:
|
67 |
+
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
68 |
+
num_pos_feats: 64
|
69 |
+
normalize: true
|
70 |
+
scale: null
|
71 |
+
temperature: 10000
|
72 |
+
mask_downsampler:
|
73 |
+
_target_: sam2.modeling.memory_encoder.MaskDownSampler
|
74 |
+
kernel_size: 3
|
75 |
+
stride: 2
|
76 |
+
padding: 1
|
77 |
+
fuser:
|
78 |
+
_target_: sam2.modeling.memory_encoder.Fuser
|
79 |
+
layer:
|
80 |
+
_target_: sam2.modeling.memory_encoder.CXBlock
|
81 |
+
dim: 256
|
82 |
+
kernel_size: 7
|
83 |
+
padding: 3
|
84 |
+
layer_scale_init_value: 1e-6
|
85 |
+
use_dwconv: True # depth-wise convs
|
86 |
+
num_layers: 2
|
87 |
+
|
88 |
+
num_maskmem: 7
|
89 |
+
image_size: 1024
|
90 |
+
# apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
|
91 |
+
sigmoid_scale_for_mem_enc: 20.0
|
92 |
+
sigmoid_bias_for_mem_enc: -10.0
|
93 |
+
use_mask_input_as_output_without_sam: true
|
94 |
+
# Memory
|
95 |
+
directly_add_no_mem_embed: true
|
96 |
+
# use high-resolution feature map in the SAM mask decoder
|
97 |
+
use_high_res_features_in_sam: true
|
98 |
+
# output 3 masks on the first click on initial conditioning frames
|
99 |
+
multimask_output_in_sam: true
|
100 |
+
# SAM heads
|
101 |
+
iou_prediction_use_sigmoid: True
|
102 |
+
# cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
103 |
+
use_obj_ptrs_in_encoder: true
|
104 |
+
add_tpos_enc_to_obj_ptrs: false
|
105 |
+
only_obj_ptrs_in_the_past_for_eval: true
|
106 |
+
# object occlusion prediction
|
107 |
+
pred_obj_scores: true
|
108 |
+
pred_obj_scores_mlp: true
|
109 |
+
fixed_no_obj_ptr: true
|
110 |
+
# multimask tracking settings
|
111 |
+
multimask_output_for_tracking: true
|
112 |
+
use_multimask_token_for_obj_ptr: true
|
113 |
+
multimask_min_pt_num: 0
|
114 |
+
multimask_max_pt_num: 1
|
115 |
+
use_mlp_for_obj_ptr_proj: true
|
116 |
+
# Compilation flag
|
117 |
+
compile_image_encoder: False
|
sam2/configs/sam2/sam2_hiera_s.yaml
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
# Model
|
4 |
+
model:
|
5 |
+
_target_: sam2.modeling.sam2_base.SAM2Base
|
6 |
+
image_encoder:
|
7 |
+
_target_: sam2.modeling.backbones.image_encoder.ImageEncoder
|
8 |
+
scalp: 1
|
9 |
+
trunk:
|
10 |
+
_target_: sam2.modeling.backbones.hieradet.Hiera
|
11 |
+
embed_dim: 96
|
12 |
+
num_heads: 1
|
13 |
+
stages: [1, 2, 11, 2]
|
14 |
+
global_att_blocks: [7, 10, 13]
|
15 |
+
window_pos_embed_bkg_spatial_size: [7, 7]
|
16 |
+
neck:
|
17 |
+
_target_: sam2.modeling.backbones.image_encoder.FpnNeck
|
18 |
+
position_encoding:
|
19 |
+
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
20 |
+
num_pos_feats: 256
|
21 |
+
normalize: true
|
22 |
+
scale: null
|
23 |
+
temperature: 10000
|
24 |
+
d_model: 256
|
25 |
+
backbone_channel_list: [768, 384, 192, 96]
|
26 |
+
fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
|
27 |
+
fpn_interp_model: nearest
|
28 |
+
|
29 |
+
memory_attention:
|
30 |
+
_target_: sam2.modeling.memory_attention.MemoryAttention
|
31 |
+
d_model: 256
|
32 |
+
pos_enc_at_input: true
|
33 |
+
layer:
|
34 |
+
_target_: sam2.modeling.memory_attention.MemoryAttentionLayer
|
35 |
+
activation: relu
|
36 |
+
dim_feedforward: 2048
|
37 |
+
dropout: 0.1
|
38 |
+
pos_enc_at_attn: false
|
39 |
+
self_attention:
|
40 |
+
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
41 |
+
rope_theta: 10000.0
|
42 |
+
feat_sizes: [64, 64]
|
43 |
+
embedding_dim: 256
|
44 |
+
num_heads: 1
|
45 |
+
downsample_rate: 1
|
46 |
+
dropout: 0.1
|
47 |
+
d_model: 256
|
48 |
+
pos_enc_at_cross_attn_keys: true
|
49 |
+
pos_enc_at_cross_attn_queries: false
|
50 |
+
cross_attention:
|
51 |
+
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
52 |
+
rope_theta: 10000.0
|
53 |
+
feat_sizes: [64, 64]
|
54 |
+
rope_k_repeat: True
|
55 |
+
embedding_dim: 256
|
56 |
+
num_heads: 1
|
57 |
+
downsample_rate: 1
|
58 |
+
dropout: 0.1
|
59 |
+
kv_in_dim: 64
|
60 |
+
num_layers: 4
|
61 |
+
|
62 |
+
memory_encoder:
|
63 |
+
_target_: sam2.modeling.memory_encoder.MemoryEncoder
|
64 |
+
out_dim: 64
|
65 |
+
position_encoding:
|
66 |
+
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
67 |
+
num_pos_feats: 64
|
68 |
+
normalize: true
|
69 |
+
scale: null
|
70 |
+
temperature: 10000
|
71 |
+
mask_downsampler:
|
72 |
+
_target_: sam2.modeling.memory_encoder.MaskDownSampler
|
73 |
+
kernel_size: 3
|
74 |
+
stride: 2
|
75 |
+
padding: 1
|
76 |
+
fuser:
|
77 |
+
_target_: sam2.modeling.memory_encoder.Fuser
|
78 |
+
layer:
|
79 |
+
_target_: sam2.modeling.memory_encoder.CXBlock
|
80 |
+
dim: 256
|
81 |
+
kernel_size: 7
|
82 |
+
padding: 3
|
83 |
+
layer_scale_init_value: 1e-6
|
84 |
+
use_dwconv: True # depth-wise convs
|
85 |
+
num_layers: 2
|
86 |
+
|
87 |
+
num_maskmem: 7
|
88 |
+
image_size: 1024
|
89 |
+
# apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
|
90 |
+
sigmoid_scale_for_mem_enc: 20.0
|
91 |
+
sigmoid_bias_for_mem_enc: -10.0
|
92 |
+
use_mask_input_as_output_without_sam: true
|
93 |
+
# Memory
|
94 |
+
directly_add_no_mem_embed: true
|
95 |
+
# use high-resolution feature map in the SAM mask decoder
|
96 |
+
use_high_res_features_in_sam: true
|
97 |
+
# output 3 masks on the first click on initial conditioning frames
|
98 |
+
multimask_output_in_sam: true
|
99 |
+
# SAM heads
|
100 |
+
iou_prediction_use_sigmoid: True
|
101 |
+
# cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
102 |
+
use_obj_ptrs_in_encoder: true
|
103 |
+
add_tpos_enc_to_obj_ptrs: false
|
104 |
+
only_obj_ptrs_in_the_past_for_eval: true
|
105 |
+
# object occlusion prediction
|
106 |
+
pred_obj_scores: true
|
107 |
+
pred_obj_scores_mlp: true
|
108 |
+
fixed_no_obj_ptr: true
|
109 |
+
# multimask tracking settings
|
110 |
+
multimask_output_for_tracking: true
|
111 |
+
use_multimask_token_for_obj_ptr: true
|
112 |
+
multimask_min_pt_num: 0
|
113 |
+
multimask_max_pt_num: 1
|
114 |
+
use_mlp_for_obj_ptr_proj: true
|
115 |
+
# Compilation flag
|
116 |
+
compile_image_encoder: False
|
sam2/configs/sam2/sam2_hiera_t.yaml
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
# Model
|
4 |
+
model:
|
5 |
+
_target_: sam2.modeling.sam2_base.SAM2Base
|
6 |
+
image_encoder:
|
7 |
+
_target_: sam2.modeling.backbones.image_encoder.ImageEncoder
|
8 |
+
scalp: 1
|
9 |
+
trunk:
|
10 |
+
_target_: sam2.modeling.backbones.hieradet.Hiera
|
11 |
+
embed_dim: 96
|
12 |
+
num_heads: 1
|
13 |
+
stages: [1, 2, 7, 2]
|
14 |
+
global_att_blocks: [5, 7, 9]
|
15 |
+
window_pos_embed_bkg_spatial_size: [7, 7]
|
16 |
+
neck:
|
17 |
+
_target_: sam2.modeling.backbones.image_encoder.FpnNeck
|
18 |
+
position_encoding:
|
19 |
+
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
20 |
+
num_pos_feats: 256
|
21 |
+
normalize: true
|
22 |
+
scale: null
|
23 |
+
temperature: 10000
|
24 |
+
d_model: 256
|
25 |
+
backbone_channel_list: [768, 384, 192, 96]
|
26 |
+
fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
|
27 |
+
fpn_interp_model: nearest
|
28 |
+
|
29 |
+
memory_attention:
|
30 |
+
_target_: sam2.modeling.memory_attention.MemoryAttention
|
31 |
+
d_model: 256
|
32 |
+
pos_enc_at_input: true
|
33 |
+
layer:
|
34 |
+
_target_: sam2.modeling.memory_attention.MemoryAttentionLayer
|
35 |
+
activation: relu
|
36 |
+
dim_feedforward: 2048
|
37 |
+
dropout: 0.1
|
38 |
+
pos_enc_at_attn: false
|
39 |
+
self_attention:
|
40 |
+
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
41 |
+
rope_theta: 10000.0
|
42 |
+
feat_sizes: [64, 64]
|
43 |
+
embedding_dim: 256
|
44 |
+
num_heads: 1
|
45 |
+
downsample_rate: 1
|
46 |
+
dropout: 0.1
|
47 |
+
d_model: 256
|
48 |
+
pos_enc_at_cross_attn_keys: true
|
49 |
+
pos_enc_at_cross_attn_queries: false
|
50 |
+
cross_attention:
|
51 |
+
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
52 |
+
rope_theta: 10000.0
|
53 |
+
feat_sizes: [64, 64]
|
54 |
+
rope_k_repeat: True
|
55 |
+
embedding_dim: 256
|
56 |
+
num_heads: 1
|
57 |
+
downsample_rate: 1
|
58 |
+
dropout: 0.1
|
59 |
+
kv_in_dim: 64
|
60 |
+
num_layers: 4
|
61 |
+
|
62 |
+
memory_encoder:
|
63 |
+
_target_: sam2.modeling.memory_encoder.MemoryEncoder
|
64 |
+
out_dim: 64
|
65 |
+
position_encoding:
|
66 |
+
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
67 |
+
num_pos_feats: 64
|
68 |
+
normalize: true
|
69 |
+
scale: null
|
70 |
+
temperature: 10000
|
71 |
+
mask_downsampler:
|
72 |
+
_target_: sam2.modeling.memory_encoder.MaskDownSampler
|
73 |
+
kernel_size: 3
|
74 |
+
stride: 2
|
75 |
+
padding: 1
|
76 |
+
fuser:
|
77 |
+
_target_: sam2.modeling.memory_encoder.Fuser
|
78 |
+
layer:
|
79 |
+
_target_: sam2.modeling.memory_encoder.CXBlock
|
80 |
+
dim: 256
|
81 |
+
kernel_size: 7
|
82 |
+
padding: 3
|
83 |
+
layer_scale_init_value: 1e-6
|
84 |
+
use_dwconv: True # depth-wise convs
|
85 |
+
num_layers: 2
|
86 |
+
|
87 |
+
num_maskmem: 7
|
88 |
+
image_size: 1024
|
89 |
+
# apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
|
90 |
+
# SAM decoder
|
91 |
+
sigmoid_scale_for_mem_enc: 20.0
|
92 |
+
sigmoid_bias_for_mem_enc: -10.0
|
93 |
+
use_mask_input_as_output_without_sam: true
|
94 |
+
# Memory
|
95 |
+
directly_add_no_mem_embed: true
|
96 |
+
# use high-resolution feature map in the SAM mask decoder
|
97 |
+
use_high_res_features_in_sam: true
|
98 |
+
# output 3 masks on the first click on initial conditioning frames
|
99 |
+
multimask_output_in_sam: true
|
100 |
+
# SAM heads
|
101 |
+
iou_prediction_use_sigmoid: True
|
102 |
+
# cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
103 |
+
use_obj_ptrs_in_encoder: true
|
104 |
+
add_tpos_enc_to_obj_ptrs: false
|
105 |
+
only_obj_ptrs_in_the_past_for_eval: true
|
106 |
+
# object occlusion prediction
|
107 |
+
pred_obj_scores: true
|
108 |
+
pred_obj_scores_mlp: true
|
109 |
+
fixed_no_obj_ptr: true
|
110 |
+
# multimask tracking settings
|
111 |
+
multimask_output_for_tracking: true
|
112 |
+
use_multimask_token_for_obj_ptr: true
|
113 |
+
multimask_min_pt_num: 0
|
114 |
+
multimask_max_pt_num: 1
|
115 |
+
use_mlp_for_obj_ptr_proj: true
|
116 |
+
# Compilation flag
|
117 |
+
# HieraT does not currently support compilation, should always be set to False
|
118 |
+
compile_image_encoder: False
|
sam2/csrc/connected_components.cu
ADDED
@@ -0,0 +1,289 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
// All rights reserved.
|
3 |
+
|
4 |
+
// This source code is licensed under the license found in the
|
5 |
+
// LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
// adapted from https://github.com/zsef123/Connected_components_PyTorch
|
8 |
+
// with license found in the LICENSE_cctorch file in the root directory.
|
9 |
+
#include <ATen/cuda/CUDAContext.h>
|
10 |
+
#include <cuda.h>
|
11 |
+
#include <cuda_runtime.h>
|
12 |
+
#include <torch/extension.h>
|
13 |
+
#include <torch/script.h>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
// 2d
|
17 |
+
#define BLOCK_ROWS 16
|
18 |
+
#define BLOCK_COLS 16
|
19 |
+
|
20 |
+
namespace cc2d {
|
21 |
+
|
22 |
+
template <typename T>
|
23 |
+
__device__ __forceinline__ unsigned char hasBit(T bitmap, unsigned char pos) {
|
24 |
+
return (bitmap >> pos) & 1;
|
25 |
+
}
|
26 |
+
|
27 |
+
__device__ int32_t find(const int32_t* s_buf, int32_t n) {
|
28 |
+
while (s_buf[n] != n)
|
29 |
+
n = s_buf[n];
|
30 |
+
return n;
|
31 |
+
}
|
32 |
+
|
33 |
+
__device__ int32_t find_n_compress(int32_t* s_buf, int32_t n) {
|
34 |
+
const int32_t id = n;
|
35 |
+
while (s_buf[n] != n) {
|
36 |
+
n = s_buf[n];
|
37 |
+
s_buf[id] = n;
|
38 |
+
}
|
39 |
+
return n;
|
40 |
+
}
|
41 |
+
|
42 |
+
__device__ void union_(int32_t* s_buf, int32_t a, int32_t b) {
|
43 |
+
bool done;
|
44 |
+
do {
|
45 |
+
a = find(s_buf, a);
|
46 |
+
b = find(s_buf, b);
|
47 |
+
|
48 |
+
if (a < b) {
|
49 |
+
int32_t old = atomicMin(s_buf + b, a);
|
50 |
+
done = (old == b);
|
51 |
+
b = old;
|
52 |
+
} else if (b < a) {
|
53 |
+
int32_t old = atomicMin(s_buf + a, b);
|
54 |
+
done = (old == a);
|
55 |
+
a = old;
|
56 |
+
} else
|
57 |
+
done = true;
|
58 |
+
|
59 |
+
} while (!done);
|
60 |
+
}
|
61 |
+
|
62 |
+
__global__ void
|
63 |
+
init_labeling(int32_t* label, const uint32_t W, const uint32_t H) {
|
64 |
+
const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2;
|
65 |
+
const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2;
|
66 |
+
const uint32_t idx = row * W + col;
|
67 |
+
|
68 |
+
if (row < H && col < W)
|
69 |
+
label[idx] = idx;
|
70 |
+
}
|
71 |
+
|
72 |
+
__global__ void
|
73 |
+
merge(uint8_t* img, int32_t* label, const uint32_t W, const uint32_t H) {
|
74 |
+
const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2;
|
75 |
+
const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2;
|
76 |
+
const uint32_t idx = row * W + col;
|
77 |
+
|
78 |
+
if (row >= H || col >= W)
|
79 |
+
return;
|
80 |
+
|
81 |
+
uint32_t P = 0;
|
82 |
+
|
83 |
+
if (img[idx])
|
84 |
+
P |= 0x777;
|
85 |
+
if (row + 1 < H && img[idx + W])
|
86 |
+
P |= 0x777 << 4;
|
87 |
+
if (col + 1 < W && img[idx + 1])
|
88 |
+
P |= 0x777 << 1;
|
89 |
+
|
90 |
+
if (col == 0)
|
91 |
+
P &= 0xEEEE;
|
92 |
+
if (col + 1 >= W)
|
93 |
+
P &= 0x3333;
|
94 |
+
else if (col + 2 >= W)
|
95 |
+
P &= 0x7777;
|
96 |
+
|
97 |
+
if (row == 0)
|
98 |
+
P &= 0xFFF0;
|
99 |
+
if (row + 1 >= H)
|
100 |
+
P &= 0xFF;
|
101 |
+
|
102 |
+
if (P > 0) {
|
103 |
+
// If need check about top-left pixel(if flag the first bit) and hit the
|
104 |
+
// top-left pixel
|
105 |
+
if (hasBit(P, 0) && img[idx - W - 1]) {
|
106 |
+
union_(label, idx, idx - 2 * W - 2); // top left block
|
107 |
+
}
|
108 |
+
|
109 |
+
if ((hasBit(P, 1) && img[idx - W]) || (hasBit(P, 2) && img[idx - W + 1]))
|
110 |
+
union_(label, idx, idx - 2 * W); // top bottom block
|
111 |
+
|
112 |
+
if (hasBit(P, 3) && img[idx + 2 - W])
|
113 |
+
union_(label, idx, idx - 2 * W + 2); // top right block
|
114 |
+
|
115 |
+
if ((hasBit(P, 4) && img[idx - 1]) || (hasBit(P, 8) && img[idx + W - 1]))
|
116 |
+
union_(label, idx, idx - 2); // just left block
|
117 |
+
}
|
118 |
+
}
|
119 |
+
|
120 |
+
__global__ void compression(int32_t* label, const int32_t W, const int32_t H) {
|
121 |
+
const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2;
|
122 |
+
const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2;
|
123 |
+
const uint32_t idx = row * W + col;
|
124 |
+
|
125 |
+
if (row < H && col < W)
|
126 |
+
find_n_compress(label, idx);
|
127 |
+
}
|
128 |
+
|
129 |
+
__global__ void final_labeling(
|
130 |
+
const uint8_t* img,
|
131 |
+
int32_t* label,
|
132 |
+
const int32_t W,
|
133 |
+
const int32_t H) {
|
134 |
+
const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2;
|
135 |
+
const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2;
|
136 |
+
const uint32_t idx = row * W + col;
|
137 |
+
|
138 |
+
if (row >= H || col >= W)
|
139 |
+
return;
|
140 |
+
|
141 |
+
int32_t y = label[idx] + 1;
|
142 |
+
|
143 |
+
if (img[idx])
|
144 |
+
label[idx] = y;
|
145 |
+
else
|
146 |
+
label[idx] = 0;
|
147 |
+
|
148 |
+
if (col + 1 < W) {
|
149 |
+
if (img[idx + 1])
|
150 |
+
label[idx + 1] = y;
|
151 |
+
else
|
152 |
+
label[idx + 1] = 0;
|
153 |
+
|
154 |
+
if (row + 1 < H) {
|
155 |
+
if (img[idx + W + 1])
|
156 |
+
label[idx + W + 1] = y;
|
157 |
+
else
|
158 |
+
label[idx + W + 1] = 0;
|
159 |
+
}
|
160 |
+
}
|
161 |
+
|
162 |
+
if (row + 1 < H) {
|
163 |
+
if (img[idx + W])
|
164 |
+
label[idx + W] = y;
|
165 |
+
else
|
166 |
+
label[idx + W] = 0;
|
167 |
+
}
|
168 |
+
}
|
169 |
+
|
170 |
+
__global__ void init_counting(
|
171 |
+
const int32_t* label,
|
172 |
+
int32_t* count_init,
|
173 |
+
const int32_t W,
|
174 |
+
const int32_t H) {
|
175 |
+
const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y);
|
176 |
+
const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x);
|
177 |
+
const uint32_t idx = row * W + col;
|
178 |
+
|
179 |
+
if (row >= H || col >= W)
|
180 |
+
return;
|
181 |
+
|
182 |
+
int32_t y = label[idx];
|
183 |
+
if (y > 0) {
|
184 |
+
int32_t count_idx = y - 1;
|
185 |
+
atomicAdd(count_init + count_idx, 1);
|
186 |
+
}
|
187 |
+
}
|
188 |
+
|
189 |
+
__global__ void final_counting(
|
190 |
+
const int32_t* label,
|
191 |
+
const int32_t* count_init,
|
192 |
+
int32_t* count_final,
|
193 |
+
const int32_t W,
|
194 |
+
const int32_t H) {
|
195 |
+
const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y);
|
196 |
+
const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x);
|
197 |
+
const uint32_t idx = row * W + col;
|
198 |
+
|
199 |
+
if (row >= H || col >= W)
|
200 |
+
return;
|
201 |
+
|
202 |
+
int32_t y = label[idx];
|
203 |
+
if (y > 0) {
|
204 |
+
int32_t count_idx = y - 1;
|
205 |
+
count_final[idx] = count_init[count_idx];
|
206 |
+
} else {
|
207 |
+
count_final[idx] = 0;
|
208 |
+
}
|
209 |
+
}
|
210 |
+
|
211 |
+
} // namespace cc2d
|
212 |
+
|
213 |
+
std::vector<torch::Tensor> get_connected_componnets(
|
214 |
+
const torch::Tensor& inputs) {
|
215 |
+
AT_ASSERTM(inputs.is_cuda(), "inputs must be a CUDA tensor");
|
216 |
+
AT_ASSERTM(inputs.ndimension() == 4, "inputs must be [N, 1, H, W] shape");
|
217 |
+
AT_ASSERTM(
|
218 |
+
inputs.scalar_type() == torch::kUInt8, "inputs must be a uint8 type");
|
219 |
+
|
220 |
+
const uint32_t N = inputs.size(0);
|
221 |
+
const uint32_t C = inputs.size(1);
|
222 |
+
const uint32_t H = inputs.size(2);
|
223 |
+
const uint32_t W = inputs.size(3);
|
224 |
+
|
225 |
+
AT_ASSERTM(C == 1, "inputs must be [N, 1, H, W] shape");
|
226 |
+
AT_ASSERTM((H % 2) == 0, "height must be an even number");
|
227 |
+
AT_ASSERTM((W % 2) == 0, "width must be an even number");
|
228 |
+
|
229 |
+
// label must be uint32_t
|
230 |
+
auto label_options =
|
231 |
+
torch::TensorOptions().dtype(torch::kInt32).device(inputs.device());
|
232 |
+
torch::Tensor labels = torch::zeros({N, C, H, W}, label_options);
|
233 |
+
torch::Tensor counts_init = torch::zeros({N, C, H, W}, label_options);
|
234 |
+
torch::Tensor counts_final = torch::zeros({N, C, H, W}, label_options);
|
235 |
+
|
236 |
+
dim3 grid = dim3(
|
237 |
+
((W + 1) / 2 + BLOCK_COLS - 1) / BLOCK_COLS,
|
238 |
+
((H + 1) / 2 + BLOCK_ROWS - 1) / BLOCK_ROWS);
|
239 |
+
dim3 block = dim3(BLOCK_COLS, BLOCK_ROWS);
|
240 |
+
dim3 grid_count =
|
241 |
+
dim3((W + BLOCK_COLS) / BLOCK_COLS, (H + BLOCK_ROWS) / BLOCK_ROWS);
|
242 |
+
dim3 block_count = dim3(BLOCK_COLS, BLOCK_ROWS);
|
243 |
+
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
244 |
+
|
245 |
+
for (int n = 0; n < N; n++) {
|
246 |
+
uint32_t offset = n * H * W;
|
247 |
+
|
248 |
+
cc2d::init_labeling<<<grid, block, 0, stream>>>(
|
249 |
+
labels.data_ptr<int32_t>() + offset, W, H);
|
250 |
+
cc2d::merge<<<grid, block, 0, stream>>>(
|
251 |
+
inputs.data_ptr<uint8_t>() + offset,
|
252 |
+
labels.data_ptr<int32_t>() + offset,
|
253 |
+
W,
|
254 |
+
H);
|
255 |
+
cc2d::compression<<<grid, block, 0, stream>>>(
|
256 |
+
labels.data_ptr<int32_t>() + offset, W, H);
|
257 |
+
cc2d::final_labeling<<<grid, block, 0, stream>>>(
|
258 |
+
inputs.data_ptr<uint8_t>() + offset,
|
259 |
+
labels.data_ptr<int32_t>() + offset,
|
260 |
+
W,
|
261 |
+
H);
|
262 |
+
|
263 |
+
// get the counting of each pixel
|
264 |
+
cc2d::init_counting<<<grid_count, block_count, 0, stream>>>(
|
265 |
+
labels.data_ptr<int32_t>() + offset,
|
266 |
+
counts_init.data_ptr<int32_t>() + offset,
|
267 |
+
W,
|
268 |
+
H);
|
269 |
+
cc2d::final_counting<<<grid_count, block_count, 0, stream>>>(
|
270 |
+
labels.data_ptr<int32_t>() + offset,
|
271 |
+
counts_init.data_ptr<int32_t>() + offset,
|
272 |
+
counts_final.data_ptr<int32_t>() + offset,
|
273 |
+
W,
|
274 |
+
H);
|
275 |
+
}
|
276 |
+
|
277 |
+
// returned values are [labels, counts]
|
278 |
+
std::vector<torch::Tensor> outputs;
|
279 |
+
outputs.push_back(labels);
|
280 |
+
outputs.push_back(counts_final);
|
281 |
+
return outputs;
|
282 |
+
}
|
283 |
+
|
284 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
285 |
+
m.def(
|
286 |
+
"get_connected_componnets",
|
287 |
+
&get_connected_componnets,
|
288 |
+
"get_connected_componnets");
|
289 |
+
}
|
sam2/modeling/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
sam2/modeling/__pycache__/__init__.cpython-312.pyc
ADDED
Binary file (156 Bytes). View file
|
|
sam2/modeling/__pycache__/memory_attention.cpython-312.pyc
ADDED
Binary file (6.79 kB). View file
|
|
sam2/modeling/__pycache__/memory_encoder.cpython-312.pyc
ADDED
Binary file (7.82 kB). View file
|
|
sam2/modeling/__pycache__/position_encoding.cpython-312.pyc
ADDED
Binary file (15.2 kB). View file
|
|
sam2/modeling/__pycache__/sam2_base.cpython-312.pyc
ADDED
Binary file (30.7 kB). View file
|
|
sam2/modeling/__pycache__/sam2_utils.cpython-312.pyc
ADDED
Binary file (17.4 kB). View file
|
|
sam2/modeling/backbones/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
sam2/modeling/backbones/__pycache__/__init__.cpython-312.pyc
ADDED
Binary file (166 Bytes). View file
|
|
sam2/modeling/backbones/__pycache__/hieradet.cpython-312.pyc
ADDED
Binary file (13.3 kB). View file
|
|
sam2/modeling/backbones/__pycache__/image_encoder.cpython-312.pyc
ADDED
Binary file (5.48 kB). View file
|
|
sam2/modeling/backbones/__pycache__/utils.cpython-312.pyc
ADDED
Binary file (4.19 kB). View file
|
|
sam2/modeling/backbones/hieradet.py
ADDED
@@ -0,0 +1,317 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import logging
|
8 |
+
from functools import partial
|
9 |
+
from typing import List, Tuple, Union
|
10 |
+
|
11 |
+
import torch
|
12 |
+
import torch.nn as nn
|
13 |
+
import torch.nn.functional as F
|
14 |
+
from iopath.common.file_io import g_pathmgr
|
15 |
+
|
16 |
+
from sam2.modeling.backbones.utils import (
|
17 |
+
PatchEmbed,
|
18 |
+
window_partition,
|
19 |
+
window_unpartition,
|
20 |
+
)
|
21 |
+
|
22 |
+
from sam2.modeling.sam2_utils import DropPath, MLP
|
23 |
+
|
24 |
+
|
25 |
+
def do_pool(x: torch.Tensor, pool: nn.Module, norm: nn.Module = None) -> torch.Tensor:
|
26 |
+
if pool is None:
|
27 |
+
return x
|
28 |
+
# (B, H, W, C) -> (B, C, H, W)
|
29 |
+
x = x.permute(0, 3, 1, 2)
|
30 |
+
x = pool(x)
|
31 |
+
# (B, C, H', W') -> (B, H', W', C)
|
32 |
+
x = x.permute(0, 2, 3, 1)
|
33 |
+
if norm:
|
34 |
+
x = norm(x)
|
35 |
+
|
36 |
+
return x
|
37 |
+
|
38 |
+
|
39 |
+
class MultiScaleAttention(nn.Module):
|
40 |
+
def __init__(
|
41 |
+
self,
|
42 |
+
dim: int,
|
43 |
+
dim_out: int,
|
44 |
+
num_heads: int,
|
45 |
+
q_pool: nn.Module = None,
|
46 |
+
):
|
47 |
+
super().__init__()
|
48 |
+
|
49 |
+
self.dim = dim
|
50 |
+
self.dim_out = dim_out
|
51 |
+
self.num_heads = num_heads
|
52 |
+
self.q_pool = q_pool
|
53 |
+
self.qkv = nn.Linear(dim, dim_out * 3)
|
54 |
+
self.proj = nn.Linear(dim_out, dim_out)
|
55 |
+
|
56 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
57 |
+
B, H, W, _ = x.shape
|
58 |
+
# qkv with shape (B, H * W, 3, nHead, C)
|
59 |
+
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1)
|
60 |
+
# q, k, v with shape (B, H * W, nheads, C)
|
61 |
+
q, k, v = torch.unbind(qkv, 2)
|
62 |
+
|
63 |
+
# Q pooling (for downsample at stage changes)
|
64 |
+
if self.q_pool:
|
65 |
+
q = do_pool(q.reshape(B, H, W, -1), self.q_pool)
|
66 |
+
H, W = q.shape[1:3] # downsampled shape
|
67 |
+
q = q.reshape(B, H * W, self.num_heads, -1)
|
68 |
+
|
69 |
+
# Torch's SDPA expects [B, nheads, H*W, C] so we transpose
|
70 |
+
x = F.scaled_dot_product_attention(
|
71 |
+
q.transpose(1, 2),
|
72 |
+
k.transpose(1, 2),
|
73 |
+
v.transpose(1, 2),
|
74 |
+
)
|
75 |
+
# Transpose back
|
76 |
+
x = x.transpose(1, 2)
|
77 |
+
x = x.reshape(B, H, W, -1)
|
78 |
+
|
79 |
+
x = self.proj(x)
|
80 |
+
|
81 |
+
return x
|
82 |
+
|
83 |
+
|
84 |
+
class MultiScaleBlock(nn.Module):
|
85 |
+
def __init__(
|
86 |
+
self,
|
87 |
+
dim: int,
|
88 |
+
dim_out: int,
|
89 |
+
num_heads: int,
|
90 |
+
mlp_ratio: float = 4.0,
|
91 |
+
drop_path: float = 0.0,
|
92 |
+
norm_layer: Union[nn.Module, str] = "LayerNorm",
|
93 |
+
q_stride: Tuple[int, int] = None,
|
94 |
+
act_layer: nn.Module = nn.GELU,
|
95 |
+
window_size: int = 0,
|
96 |
+
):
|
97 |
+
super().__init__()
|
98 |
+
|
99 |
+
if isinstance(norm_layer, str):
|
100 |
+
norm_layer = partial(getattr(nn, norm_layer), eps=1e-6)
|
101 |
+
|
102 |
+
self.dim = dim
|
103 |
+
self.dim_out = dim_out
|
104 |
+
self.norm1 = norm_layer(dim)
|
105 |
+
|
106 |
+
self.window_size = window_size
|
107 |
+
|
108 |
+
self.pool, self.q_stride = None, q_stride
|
109 |
+
if self.q_stride:
|
110 |
+
self.pool = nn.MaxPool2d(
|
111 |
+
kernel_size=q_stride, stride=q_stride, ceil_mode=False
|
112 |
+
)
|
113 |
+
|
114 |
+
self.attn = MultiScaleAttention(
|
115 |
+
dim,
|
116 |
+
dim_out,
|
117 |
+
num_heads=num_heads,
|
118 |
+
q_pool=self.pool,
|
119 |
+
)
|
120 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
121 |
+
|
122 |
+
self.norm2 = norm_layer(dim_out)
|
123 |
+
self.mlp = MLP(
|
124 |
+
dim_out,
|
125 |
+
int(dim_out * mlp_ratio),
|
126 |
+
dim_out,
|
127 |
+
num_layers=2,
|
128 |
+
activation=act_layer,
|
129 |
+
)
|
130 |
+
|
131 |
+
if dim != dim_out:
|
132 |
+
self.proj = nn.Linear(dim, dim_out)
|
133 |
+
|
134 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
135 |
+
shortcut = x # B, H, W, C
|
136 |
+
x = self.norm1(x)
|
137 |
+
|
138 |
+
# Skip connection
|
139 |
+
if self.dim != self.dim_out:
|
140 |
+
shortcut = do_pool(self.proj(x), self.pool)
|
141 |
+
|
142 |
+
# Window partition
|
143 |
+
window_size = self.window_size
|
144 |
+
if window_size > 0:
|
145 |
+
H, W = x.shape[1], x.shape[2]
|
146 |
+
x, pad_hw = window_partition(x, window_size)
|
147 |
+
|
148 |
+
# Window Attention + Q Pooling (if stage change)
|
149 |
+
x = self.attn(x)
|
150 |
+
if self.q_stride:
|
151 |
+
# Shapes have changed due to Q pooling
|
152 |
+
window_size = self.window_size // self.q_stride[0]
|
153 |
+
H, W = shortcut.shape[1:3]
|
154 |
+
|
155 |
+
pad_h = (window_size - H % window_size) % window_size
|
156 |
+
pad_w = (window_size - W % window_size) % window_size
|
157 |
+
pad_hw = (H + pad_h, W + pad_w)
|
158 |
+
|
159 |
+
# Reverse window partition
|
160 |
+
if self.window_size > 0:
|
161 |
+
x = window_unpartition(x, window_size, pad_hw, (H, W))
|
162 |
+
|
163 |
+
x = shortcut + self.drop_path(x)
|
164 |
+
# MLP
|
165 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
166 |
+
return x
|
167 |
+
|
168 |
+
|
169 |
+
class Hiera(nn.Module):
|
170 |
+
"""
|
171 |
+
Reference: https://arxiv.org/abs/2306.00989
|
172 |
+
"""
|
173 |
+
|
174 |
+
def __init__(
|
175 |
+
self,
|
176 |
+
embed_dim: int = 96, # initial embed dim
|
177 |
+
num_heads: int = 1, # initial number of heads
|
178 |
+
drop_path_rate: float = 0.0, # stochastic depth
|
179 |
+
q_pool: int = 3, # number of q_pool stages
|
180 |
+
q_stride: Tuple[int, int] = (2, 2), # downsample stride bet. stages
|
181 |
+
stages: Tuple[int, ...] = (2, 3, 16, 3), # blocks per stage
|
182 |
+
dim_mul: float = 2.0, # dim_mul factor at stage shift
|
183 |
+
head_mul: float = 2.0, # head_mul factor at stage shift
|
184 |
+
window_pos_embed_bkg_spatial_size: Tuple[int, int] = (14, 14),
|
185 |
+
# window size per stage, when not using global att.
|
186 |
+
window_spec: Tuple[int, ...] = (
|
187 |
+
8,
|
188 |
+
4,
|
189 |
+
14,
|
190 |
+
7,
|
191 |
+
),
|
192 |
+
# global attn in these blocks
|
193 |
+
global_att_blocks: Tuple[int, ...] = (
|
194 |
+
12,
|
195 |
+
16,
|
196 |
+
20,
|
197 |
+
),
|
198 |
+
weights_path=None,
|
199 |
+
return_interm_layers=True, # return feats from every stage
|
200 |
+
):
|
201 |
+
super().__init__()
|
202 |
+
|
203 |
+
assert len(stages) == len(window_spec)
|
204 |
+
self.window_spec = window_spec
|
205 |
+
|
206 |
+
depth = sum(stages)
|
207 |
+
self.q_stride = q_stride
|
208 |
+
self.stage_ends = [sum(stages[:i]) - 1 for i in range(1, len(stages) + 1)]
|
209 |
+
assert 0 <= q_pool <= len(self.stage_ends[:-1])
|
210 |
+
self.q_pool_blocks = [x + 1 for x in self.stage_ends[:-1]][:q_pool]
|
211 |
+
self.return_interm_layers = return_interm_layers
|
212 |
+
|
213 |
+
self.patch_embed = PatchEmbed(
|
214 |
+
embed_dim=embed_dim,
|
215 |
+
)
|
216 |
+
# Which blocks have global att?
|
217 |
+
self.global_att_blocks = global_att_blocks
|
218 |
+
|
219 |
+
# Windowed positional embedding (https://arxiv.org/abs/2311.05613)
|
220 |
+
self.window_pos_embed_bkg_spatial_size = window_pos_embed_bkg_spatial_size
|
221 |
+
self.pos_embed = nn.Parameter(
|
222 |
+
torch.zeros(1, embed_dim, *self.window_pos_embed_bkg_spatial_size)
|
223 |
+
)
|
224 |
+
self.pos_embed_window = nn.Parameter(
|
225 |
+
torch.zeros(1, embed_dim, self.window_spec[0], self.window_spec[0])
|
226 |
+
)
|
227 |
+
|
228 |
+
dpr = [
|
229 |
+
x.item() for x in torch.linspace(0, drop_path_rate, depth)
|
230 |
+
] # stochastic depth decay rule
|
231 |
+
|
232 |
+
cur_stage = 1
|
233 |
+
self.blocks = nn.ModuleList()
|
234 |
+
|
235 |
+
for i in range(depth):
|
236 |
+
dim_out = embed_dim
|
237 |
+
# lags by a block, so first block of
|
238 |
+
# next stage uses an initial window size
|
239 |
+
# of previous stage and final window size of current stage
|
240 |
+
window_size = self.window_spec[cur_stage - 1]
|
241 |
+
|
242 |
+
if self.global_att_blocks is not None:
|
243 |
+
window_size = 0 if i in self.global_att_blocks else window_size
|
244 |
+
|
245 |
+
if i - 1 in self.stage_ends:
|
246 |
+
dim_out = int(embed_dim * dim_mul)
|
247 |
+
num_heads = int(num_heads * head_mul)
|
248 |
+
cur_stage += 1
|
249 |
+
|
250 |
+
block = MultiScaleBlock(
|
251 |
+
dim=embed_dim,
|
252 |
+
dim_out=dim_out,
|
253 |
+
num_heads=num_heads,
|
254 |
+
drop_path=dpr[i],
|
255 |
+
q_stride=self.q_stride if i in self.q_pool_blocks else None,
|
256 |
+
window_size=window_size,
|
257 |
+
)
|
258 |
+
|
259 |
+
embed_dim = dim_out
|
260 |
+
self.blocks.append(block)
|
261 |
+
|
262 |
+
self.channel_list = (
|
263 |
+
[self.blocks[i].dim_out for i in self.stage_ends[::-1]]
|
264 |
+
if return_interm_layers
|
265 |
+
else [self.blocks[-1].dim_out]
|
266 |
+
)
|
267 |
+
|
268 |
+
if weights_path is not None:
|
269 |
+
with g_pathmgr.open(weights_path, "rb") as f:
|
270 |
+
chkpt = torch.load(f, map_location="cpu")
|
271 |
+
logging.info("loading Hiera", self.load_state_dict(chkpt, strict=False))
|
272 |
+
|
273 |
+
def _get_pos_embed(self, hw: Tuple[int, int]) -> torch.Tensor:
|
274 |
+
h, w = hw
|
275 |
+
window_embed = self.pos_embed_window
|
276 |
+
pos_embed = F.interpolate(self.pos_embed, size=(h, w), mode="bicubic")
|
277 |
+
pos_embed = pos_embed + window_embed.tile(
|
278 |
+
[x // y for x, y in zip(pos_embed.shape, window_embed.shape)]
|
279 |
+
)
|
280 |
+
pos_embed = pos_embed.permute(0, 2, 3, 1)
|
281 |
+
return pos_embed
|
282 |
+
|
283 |
+
def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
|
284 |
+
x = self.patch_embed(x)
|
285 |
+
# x: (B, H, W, C)
|
286 |
+
|
287 |
+
# Add pos embed
|
288 |
+
x = x + self._get_pos_embed(x.shape[1:3])
|
289 |
+
|
290 |
+
outputs = []
|
291 |
+
for i, blk in enumerate(self.blocks):
|
292 |
+
x = blk(x)
|
293 |
+
if (i == self.stage_ends[-1]) or (
|
294 |
+
i in self.stage_ends and self.return_interm_layers
|
295 |
+
):
|
296 |
+
feats = x.permute(0, 3, 1, 2)
|
297 |
+
outputs.append(feats)
|
298 |
+
|
299 |
+
return outputs
|
300 |
+
|
301 |
+
def get_layer_id(self, layer_name):
|
302 |
+
# https://github.com/microsoft/unilm/blob/master/beit/optim_factory.py#L33
|
303 |
+
num_layers = self.get_num_layers()
|
304 |
+
|
305 |
+
if layer_name.find("rel_pos") != -1:
|
306 |
+
return num_layers + 1
|
307 |
+
elif layer_name.find("pos_embed") != -1:
|
308 |
+
return 0
|
309 |
+
elif layer_name.find("patch_embed") != -1:
|
310 |
+
return 0
|
311 |
+
elif layer_name.find("blocks") != -1:
|
312 |
+
return int(layer_name.split("blocks")[1].split(".")[1]) + 1
|
313 |
+
else:
|
314 |
+
return num_layers + 1
|
315 |
+
|
316 |
+
def get_num_layers(self) -> int:
|
317 |
+
return len(self.blocks)
|
sam2/modeling/backbones/image_encoder.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
from typing import List, Optional
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.nn.functional as F
|
12 |
+
|
13 |
+
|
14 |
+
class ImageEncoder(nn.Module):
|
15 |
+
def __init__(
|
16 |
+
self,
|
17 |
+
trunk: nn.Module,
|
18 |
+
neck: nn.Module,
|
19 |
+
scalp: int = 0,
|
20 |
+
):
|
21 |
+
super().__init__()
|
22 |
+
self.trunk = trunk
|
23 |
+
self.neck = neck
|
24 |
+
self.scalp = scalp
|
25 |
+
assert (
|
26 |
+
self.trunk.channel_list == self.neck.backbone_channel_list
|
27 |
+
), f"Channel dims of trunk and neck do not match. Trunk: {self.trunk.channel_list}, neck: {self.neck.backbone_channel_list}"
|
28 |
+
|
29 |
+
def forward(self, sample: torch.Tensor):
|
30 |
+
# Forward through backbone
|
31 |
+
features, pos = self.neck(self.trunk(sample))
|
32 |
+
if self.scalp > 0:
|
33 |
+
# Discard the lowest resolution features
|
34 |
+
features, pos = features[: -self.scalp], pos[: -self.scalp]
|
35 |
+
|
36 |
+
src = features[-1]
|
37 |
+
output = {
|
38 |
+
"vision_features": src,
|
39 |
+
"vision_pos_enc": pos,
|
40 |
+
"backbone_fpn": features,
|
41 |
+
}
|
42 |
+
return output
|
43 |
+
|
44 |
+
|
45 |
+
class FpnNeck(nn.Module):
|
46 |
+
"""
|
47 |
+
A modified variant of Feature Pyramid Network (FPN) neck
|
48 |
+
(we remove output conv and also do bicubic interpolation similar to ViT
|
49 |
+
pos embed interpolation)
|
50 |
+
"""
|
51 |
+
|
52 |
+
def __init__(
|
53 |
+
self,
|
54 |
+
position_encoding: nn.Module,
|
55 |
+
d_model: int,
|
56 |
+
backbone_channel_list: List[int],
|
57 |
+
kernel_size: int = 1,
|
58 |
+
stride: int = 1,
|
59 |
+
padding: int = 0,
|
60 |
+
fpn_interp_model: str = "bilinear",
|
61 |
+
fuse_type: str = "sum",
|
62 |
+
fpn_top_down_levels: Optional[List[int]] = None,
|
63 |
+
):
|
64 |
+
"""Initialize the neck
|
65 |
+
:param trunk: the backbone
|
66 |
+
:param position_encoding: the positional encoding to use
|
67 |
+
:param d_model: the dimension of the model
|
68 |
+
:param neck_norm: the normalization to use
|
69 |
+
"""
|
70 |
+
super().__init__()
|
71 |
+
self.position_encoding = position_encoding
|
72 |
+
self.convs = nn.ModuleList()
|
73 |
+
self.backbone_channel_list = backbone_channel_list
|
74 |
+
self.d_model = d_model
|
75 |
+
for dim in backbone_channel_list:
|
76 |
+
current = nn.Sequential()
|
77 |
+
current.add_module(
|
78 |
+
"conv",
|
79 |
+
nn.Conv2d(
|
80 |
+
in_channels=dim,
|
81 |
+
out_channels=d_model,
|
82 |
+
kernel_size=kernel_size,
|
83 |
+
stride=stride,
|
84 |
+
padding=padding,
|
85 |
+
),
|
86 |
+
)
|
87 |
+
|
88 |
+
self.convs.append(current)
|
89 |
+
self.fpn_interp_model = fpn_interp_model
|
90 |
+
assert fuse_type in ["sum", "avg"]
|
91 |
+
self.fuse_type = fuse_type
|
92 |
+
|
93 |
+
# levels to have top-down features in its outputs
|
94 |
+
# e.g. if fpn_top_down_levels is [2, 3], then only outputs of level 2 and 3
|
95 |
+
# have top-down propagation, while outputs of level 0 and level 1 have only
|
96 |
+
# lateral features from the same backbone level.
|
97 |
+
if fpn_top_down_levels is None:
|
98 |
+
# default is to have top-down features on all levels
|
99 |
+
fpn_top_down_levels = range(len(self.convs))
|
100 |
+
self.fpn_top_down_levels = list(fpn_top_down_levels)
|
101 |
+
|
102 |
+
def forward(self, xs: List[torch.Tensor]):
|
103 |
+
|
104 |
+
out = [None] * len(self.convs)
|
105 |
+
pos = [None] * len(self.convs)
|
106 |
+
assert len(xs) == len(self.convs)
|
107 |
+
# fpn forward pass
|
108 |
+
# see https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/fpn.py
|
109 |
+
prev_features = None
|
110 |
+
# forward in top-down order (from low to high resolution)
|
111 |
+
n = len(self.convs) - 1
|
112 |
+
for i in range(n, -1, -1):
|
113 |
+
x = xs[i]
|
114 |
+
lateral_features = self.convs[n - i](x)
|
115 |
+
if i in self.fpn_top_down_levels and prev_features is not None:
|
116 |
+
top_down_features = F.interpolate(
|
117 |
+
prev_features.to(dtype=torch.float32),
|
118 |
+
scale_factor=2.0,
|
119 |
+
mode=self.fpn_interp_model,
|
120 |
+
align_corners=(
|
121 |
+
None if self.fpn_interp_model == "nearest" else False
|
122 |
+
),
|
123 |
+
antialias=False,
|
124 |
+
)
|
125 |
+
prev_features = lateral_features + top_down_features
|
126 |
+
if self.fuse_type == "avg":
|
127 |
+
prev_features /= 2
|
128 |
+
else:
|
129 |
+
prev_features = lateral_features
|
130 |
+
x_out = prev_features
|
131 |
+
out[i] = x_out
|
132 |
+
pos[i] = self.position_encoding(x_out).to(x_out.dtype)
|
133 |
+
|
134 |
+
return out, pos
|
sam2/modeling/backbones/utils.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
"""Some utilities for backbones, in particular for windowing"""
|
8 |
+
|
9 |
+
from typing import Tuple
|
10 |
+
|
11 |
+
import torch
|
12 |
+
import torch.nn as nn
|
13 |
+
import torch.nn.functional as F
|
14 |
+
|
15 |
+
|
16 |
+
def window_partition(x, window_size):
|
17 |
+
"""
|
18 |
+
Partition into non-overlapping windows with padding if needed.
|
19 |
+
Args:
|
20 |
+
x (tensor): input tokens with [B, H, W, C].
|
21 |
+
window_size (int): window size.
|
22 |
+
Returns:
|
23 |
+
windows: windows after partition with [B * num_windows, window_size, window_size, C].
|
24 |
+
(Hp, Wp): padded height and width before partition
|
25 |
+
"""
|
26 |
+
B, H, W, C = x.shape
|
27 |
+
|
28 |
+
pad_h = (window_size - H % window_size) % window_size
|
29 |
+
pad_w = (window_size - W % window_size) % window_size
|
30 |
+
if pad_h > 0 or pad_w > 0:
|
31 |
+
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
|
32 |
+
Hp, Wp = H + pad_h, W + pad_w
|
33 |
+
|
34 |
+
x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
|
35 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).reshape(-1, window_size, window_size, C)
|
36 |
+
return windows, (Hp, Wp)
|
37 |
+
|
38 |
+
|
39 |
+
def window_unpartition(windows, window_size, pad_hw, hw):
|
40 |
+
"""
|
41 |
+
Window unpartition into original sequences and removing padding.
|
42 |
+
Args:
|
43 |
+
x (tensor): input tokens with [B * num_windows, window_size, window_size, C].
|
44 |
+
window_size (int): window size.
|
45 |
+
pad_hw (Tuple): padded height and width (Hp, Wp).
|
46 |
+
hw (Tuple): original height and width (H, W) before padding.
|
47 |
+
Returns:
|
48 |
+
x: unpartitioned sequences with [B, H, W, C].
|
49 |
+
"""
|
50 |
+
Hp, Wp = pad_hw
|
51 |
+
H, W = hw
|
52 |
+
B = windows.shape[0] // (Hp * Wp // window_size // window_size)
|
53 |
+
x = windows.reshape(
|
54 |
+
B, Hp // window_size, Wp // window_size, window_size, window_size, -1
|
55 |
+
)
|
56 |
+
x = x.permute(0, 1, 3, 2, 4, 5).reshape(B, Hp, Wp, -1)
|
57 |
+
|
58 |
+
if Hp > H or Wp > W:
|
59 |
+
x = x[:, :H, :W, :]
|
60 |
+
return x
|
61 |
+
|
62 |
+
|
63 |
+
class PatchEmbed(nn.Module):
|
64 |
+
"""
|
65 |
+
Image to Patch Embedding.
|
66 |
+
"""
|
67 |
+
|
68 |
+
def __init__(
|
69 |
+
self,
|
70 |
+
kernel_size: Tuple[int, ...] = (7, 7),
|
71 |
+
stride: Tuple[int, ...] = (4, 4),
|
72 |
+
padding: Tuple[int, ...] = (3, 3),
|
73 |
+
in_chans: int = 3,
|
74 |
+
embed_dim: int = 768,
|
75 |
+
):
|
76 |
+
"""
|
77 |
+
Args:
|
78 |
+
kernel_size (Tuple): kernel size of the projection layer.
|
79 |
+
stride (Tuple): stride of the projection layer.
|
80 |
+
padding (Tuple): padding size of the projection layer.
|
81 |
+
in_chans (int): Number of input image channels.
|
82 |
+
embed_dim (int): embed_dim (int): Patch embedding dimension.
|
83 |
+
"""
|
84 |
+
super().__init__()
|
85 |
+
self.proj = nn.Conv2d(
|
86 |
+
in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
|
87 |
+
)
|
88 |
+
|
89 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
90 |
+
x = self.proj(x)
|
91 |
+
# B C H W -> B H W C
|
92 |
+
x = x.permute(0, 2, 3, 1)
|
93 |
+
return x
|
sam2/modeling/memory_attention.py
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
from typing import Optional
|
8 |
+
|
9 |
+
import torch
|
10 |
+
from torch import nn, Tensor
|
11 |
+
|
12 |
+
from sam2.modeling.sam.transformer import RoPEAttention
|
13 |
+
|
14 |
+
from sam2.modeling.sam2_utils import get_activation_fn, get_clones
|
15 |
+
|
16 |
+
|
17 |
+
class MemoryAttentionLayer(nn.Module):
|
18 |
+
|
19 |
+
def __init__(
|
20 |
+
self,
|
21 |
+
activation: str,
|
22 |
+
cross_attention: nn.Module,
|
23 |
+
d_model: int,
|
24 |
+
dim_feedforward: int,
|
25 |
+
dropout: float,
|
26 |
+
pos_enc_at_attn: bool,
|
27 |
+
pos_enc_at_cross_attn_keys: bool,
|
28 |
+
pos_enc_at_cross_attn_queries: bool,
|
29 |
+
self_attention: nn.Module,
|
30 |
+
):
|
31 |
+
super().__init__()
|
32 |
+
self.d_model = d_model
|
33 |
+
self.dim_feedforward = dim_feedforward
|
34 |
+
self.dropout_value = dropout
|
35 |
+
self.self_attn = self_attention
|
36 |
+
self.cross_attn_image = cross_attention
|
37 |
+
|
38 |
+
# Implementation of Feedforward model
|
39 |
+
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
40 |
+
self.dropout = nn.Dropout(dropout)
|
41 |
+
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
42 |
+
|
43 |
+
self.norm1 = nn.LayerNorm(d_model)
|
44 |
+
self.norm2 = nn.LayerNorm(d_model)
|
45 |
+
self.norm3 = nn.LayerNorm(d_model)
|
46 |
+
self.dropout1 = nn.Dropout(dropout)
|
47 |
+
self.dropout2 = nn.Dropout(dropout)
|
48 |
+
self.dropout3 = nn.Dropout(dropout)
|
49 |
+
|
50 |
+
self.activation_str = activation
|
51 |
+
self.activation = get_activation_fn(activation)
|
52 |
+
|
53 |
+
# Where to add pos enc
|
54 |
+
self.pos_enc_at_attn = pos_enc_at_attn
|
55 |
+
self.pos_enc_at_cross_attn_queries = pos_enc_at_cross_attn_queries
|
56 |
+
self.pos_enc_at_cross_attn_keys = pos_enc_at_cross_attn_keys
|
57 |
+
|
58 |
+
def _forward_sa(self, tgt, query_pos):
|
59 |
+
# Self-Attention
|
60 |
+
tgt2 = self.norm1(tgt)
|
61 |
+
q = k = tgt2 + query_pos if self.pos_enc_at_attn else tgt2
|
62 |
+
tgt2 = self.self_attn(q, k, v=tgt2)
|
63 |
+
tgt = tgt + self.dropout1(tgt2)
|
64 |
+
return tgt
|
65 |
+
|
66 |
+
def _forward_ca(self, tgt, memory, query_pos, pos, num_k_exclude_rope=0):
|
67 |
+
kwds = {}
|
68 |
+
if num_k_exclude_rope > 0:
|
69 |
+
assert isinstance(self.cross_attn_image, RoPEAttention)
|
70 |
+
kwds = {"num_k_exclude_rope": num_k_exclude_rope}
|
71 |
+
|
72 |
+
# Cross-Attention
|
73 |
+
tgt2 = self.norm2(tgt)
|
74 |
+
tgt2 = self.cross_attn_image(
|
75 |
+
q=tgt2 + query_pos if self.pos_enc_at_cross_attn_queries else tgt2,
|
76 |
+
k=memory + pos if self.pos_enc_at_cross_attn_keys else memory,
|
77 |
+
v=memory,
|
78 |
+
**kwds,
|
79 |
+
)
|
80 |
+
tgt = tgt + self.dropout2(tgt2)
|
81 |
+
return tgt
|
82 |
+
|
83 |
+
def forward(
|
84 |
+
self,
|
85 |
+
tgt,
|
86 |
+
memory,
|
87 |
+
pos: Optional[Tensor] = None,
|
88 |
+
query_pos: Optional[Tensor] = None,
|
89 |
+
num_k_exclude_rope: int = 0,
|
90 |
+
) -> torch.Tensor:
|
91 |
+
|
92 |
+
# Self-Attn, Cross-Attn
|
93 |
+
tgt = self._forward_sa(tgt, query_pos)
|
94 |
+
tgt = self._forward_ca(tgt, memory, query_pos, pos, num_k_exclude_rope)
|
95 |
+
# MLP
|
96 |
+
tgt2 = self.norm3(tgt)
|
97 |
+
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
|
98 |
+
tgt = tgt + self.dropout3(tgt2)
|
99 |
+
return tgt
|
100 |
+
|
101 |
+
|
102 |
+
class MemoryAttention(nn.Module):
|
103 |
+
def __init__(
|
104 |
+
self,
|
105 |
+
d_model: int,
|
106 |
+
pos_enc_at_input: bool,
|
107 |
+
layer: nn.Module,
|
108 |
+
num_layers: int,
|
109 |
+
batch_first: bool = True, # Do layers expect batch first input?
|
110 |
+
):
|
111 |
+
super().__init__()
|
112 |
+
self.d_model = d_model
|
113 |
+
self.layers = get_clones(layer, num_layers)
|
114 |
+
self.num_layers = num_layers
|
115 |
+
self.norm = nn.LayerNorm(d_model)
|
116 |
+
self.pos_enc_at_input = pos_enc_at_input
|
117 |
+
self.batch_first = batch_first
|
118 |
+
|
119 |
+
def forward(
|
120 |
+
self,
|
121 |
+
curr: torch.Tensor, # self-attention inputs
|
122 |
+
memory: torch.Tensor, # cross-attention inputs
|
123 |
+
curr_pos: Optional[Tensor] = None, # pos_enc for self-attention inputs
|
124 |
+
memory_pos: Optional[Tensor] = None, # pos_enc for cross-attention inputs
|
125 |
+
num_obj_ptr_tokens: int = 0, # number of object pointer *tokens*
|
126 |
+
):
|
127 |
+
if isinstance(curr, list):
|
128 |
+
assert isinstance(curr_pos, list)
|
129 |
+
assert len(curr) == len(curr_pos) == 1
|
130 |
+
curr, curr_pos = (
|
131 |
+
curr[0],
|
132 |
+
curr_pos[0],
|
133 |
+
)
|
134 |
+
|
135 |
+
assert (
|
136 |
+
curr.shape[1] == memory.shape[1]
|
137 |
+
), "Batch size must be the same for curr and memory"
|
138 |
+
|
139 |
+
output = curr
|
140 |
+
if self.pos_enc_at_input and curr_pos is not None:
|
141 |
+
output = output + 0.1 * curr_pos
|
142 |
+
|
143 |
+
if self.batch_first:
|
144 |
+
# Convert to batch first
|
145 |
+
output = output.transpose(0, 1)
|
146 |
+
curr_pos = curr_pos.transpose(0, 1)
|
147 |
+
memory = memory.transpose(0, 1)
|
148 |
+
memory_pos = memory_pos.transpose(0, 1)
|
149 |
+
|
150 |
+
for layer in self.layers:
|
151 |
+
kwds = {}
|
152 |
+
if isinstance(layer.cross_attn_image, RoPEAttention):
|
153 |
+
kwds = {"num_k_exclude_rope": num_obj_ptr_tokens}
|
154 |
+
|
155 |
+
output = layer(
|
156 |
+
tgt=output,
|
157 |
+
memory=memory,
|
158 |
+
pos=memory_pos,
|
159 |
+
query_pos=curr_pos,
|
160 |
+
**kwds,
|
161 |
+
)
|
162 |
+
normed_output = self.norm(output)
|
163 |
+
|
164 |
+
if self.batch_first:
|
165 |
+
# Convert back to seq first
|
166 |
+
normed_output = normed_output.transpose(0, 1)
|
167 |
+
curr_pos = curr_pos.transpose(0, 1)
|
168 |
+
|
169 |
+
return normed_output
|
sam2/modeling/memory_encoder.py
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import math
|
8 |
+
from typing import Tuple
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
import torch.nn.functional as F
|
13 |
+
|
14 |
+
from sam2.modeling.sam2_utils import DropPath, get_clones, LayerNorm2d
|
15 |
+
|
16 |
+
|
17 |
+
class MaskDownSampler(nn.Module):
|
18 |
+
"""
|
19 |
+
Progressively downsample a mask by total_stride, each time by stride.
|
20 |
+
Note that LayerNorm is applied per *token*, like in ViT.
|
21 |
+
|
22 |
+
With each downsample (by a factor stride**2), channel capacity increases by the same factor.
|
23 |
+
In the end, we linearly project to embed_dim channels.
|
24 |
+
"""
|
25 |
+
|
26 |
+
def __init__(
|
27 |
+
self,
|
28 |
+
embed_dim=256,
|
29 |
+
kernel_size=4,
|
30 |
+
stride=4,
|
31 |
+
padding=0,
|
32 |
+
total_stride=16,
|
33 |
+
activation=nn.GELU,
|
34 |
+
):
|
35 |
+
super().__init__()
|
36 |
+
num_layers = int(math.log2(total_stride) // math.log2(stride))
|
37 |
+
assert stride**num_layers == total_stride
|
38 |
+
self.encoder = nn.Sequential()
|
39 |
+
mask_in_chans, mask_out_chans = 1, 1
|
40 |
+
for _ in range(num_layers):
|
41 |
+
mask_out_chans = mask_in_chans * (stride**2)
|
42 |
+
self.encoder.append(
|
43 |
+
nn.Conv2d(
|
44 |
+
mask_in_chans,
|
45 |
+
mask_out_chans,
|
46 |
+
kernel_size=kernel_size,
|
47 |
+
stride=stride,
|
48 |
+
padding=padding,
|
49 |
+
)
|
50 |
+
)
|
51 |
+
self.encoder.append(LayerNorm2d(mask_out_chans))
|
52 |
+
self.encoder.append(activation())
|
53 |
+
mask_in_chans = mask_out_chans
|
54 |
+
|
55 |
+
self.encoder.append(nn.Conv2d(mask_out_chans, embed_dim, kernel_size=1))
|
56 |
+
|
57 |
+
def forward(self, x):
|
58 |
+
return self.encoder(x)
|
59 |
+
|
60 |
+
|
61 |
+
# Lightly adapted from ConvNext (https://github.com/facebookresearch/ConvNeXt)
|
62 |
+
class CXBlock(nn.Module):
|
63 |
+
r"""ConvNeXt Block. There are two equivalent implementations:
|
64 |
+
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
|
65 |
+
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
|
66 |
+
We use (2) as we find it slightly faster in PyTorch
|
67 |
+
|
68 |
+
Args:
|
69 |
+
dim (int): Number of input channels.
|
70 |
+
drop_path (float): Stochastic depth rate. Default: 0.0
|
71 |
+
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
|
72 |
+
"""
|
73 |
+
|
74 |
+
def __init__(
|
75 |
+
self,
|
76 |
+
dim,
|
77 |
+
kernel_size=7,
|
78 |
+
padding=3,
|
79 |
+
drop_path=0.0,
|
80 |
+
layer_scale_init_value=1e-6,
|
81 |
+
use_dwconv=True,
|
82 |
+
):
|
83 |
+
super().__init__()
|
84 |
+
self.dwconv = nn.Conv2d(
|
85 |
+
dim,
|
86 |
+
dim,
|
87 |
+
kernel_size=kernel_size,
|
88 |
+
padding=padding,
|
89 |
+
groups=dim if use_dwconv else 1,
|
90 |
+
) # depthwise conv
|
91 |
+
self.norm = LayerNorm2d(dim, eps=1e-6)
|
92 |
+
self.pwconv1 = nn.Linear(
|
93 |
+
dim, 4 * dim
|
94 |
+
) # pointwise/1x1 convs, implemented with linear layers
|
95 |
+
self.act = nn.GELU()
|
96 |
+
self.pwconv2 = nn.Linear(4 * dim, dim)
|
97 |
+
self.gamma = (
|
98 |
+
nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True)
|
99 |
+
if layer_scale_init_value > 0
|
100 |
+
else None
|
101 |
+
)
|
102 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
103 |
+
|
104 |
+
def forward(self, x):
|
105 |
+
input = x
|
106 |
+
x = self.dwconv(x)
|
107 |
+
x = self.norm(x)
|
108 |
+
x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
|
109 |
+
x = self.pwconv1(x)
|
110 |
+
x = self.act(x)
|
111 |
+
x = self.pwconv2(x)
|
112 |
+
if self.gamma is not None:
|
113 |
+
x = self.gamma * x
|
114 |
+
x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
|
115 |
+
|
116 |
+
x = input + self.drop_path(x)
|
117 |
+
return x
|
118 |
+
|
119 |
+
|
120 |
+
class Fuser(nn.Module):
|
121 |
+
def __init__(self, layer, num_layers, dim=None, input_projection=False):
|
122 |
+
super().__init__()
|
123 |
+
self.proj = nn.Identity()
|
124 |
+
self.layers = get_clones(layer, num_layers)
|
125 |
+
|
126 |
+
if input_projection:
|
127 |
+
assert dim is not None
|
128 |
+
self.proj = nn.Conv2d(dim, dim, kernel_size=1)
|
129 |
+
|
130 |
+
def forward(self, x):
|
131 |
+
# normally x: (N, C, H, W)
|
132 |
+
x = self.proj(x)
|
133 |
+
for layer in self.layers:
|
134 |
+
x = layer(x)
|
135 |
+
return x
|
136 |
+
|
137 |
+
|
138 |
+
class MemoryEncoder(nn.Module):
|
139 |
+
def __init__(
|
140 |
+
self,
|
141 |
+
out_dim,
|
142 |
+
mask_downsampler,
|
143 |
+
fuser,
|
144 |
+
position_encoding,
|
145 |
+
in_dim=256, # in_dim of pix_feats
|
146 |
+
):
|
147 |
+
super().__init__()
|
148 |
+
|
149 |
+
self.mask_downsampler = mask_downsampler
|
150 |
+
|
151 |
+
self.pix_feat_proj = nn.Conv2d(in_dim, in_dim, kernel_size=1)
|
152 |
+
self.fuser = fuser
|
153 |
+
self.position_encoding = position_encoding
|
154 |
+
self.out_proj = nn.Identity()
|
155 |
+
if out_dim != in_dim:
|
156 |
+
self.out_proj = nn.Conv2d(in_dim, out_dim, kernel_size=1)
|
157 |
+
|
158 |
+
def forward(
|
159 |
+
self,
|
160 |
+
pix_feat: torch.Tensor,
|
161 |
+
masks: torch.Tensor,
|
162 |
+
skip_mask_sigmoid: bool = False,
|
163 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
164 |
+
## Process masks
|
165 |
+
# sigmoid, so that less domain shift from gt masks which are bool
|
166 |
+
if not skip_mask_sigmoid:
|
167 |
+
masks = F.sigmoid(masks)
|
168 |
+
masks = self.mask_downsampler(masks)
|
169 |
+
|
170 |
+
## Fuse pix_feats and downsampled masks
|
171 |
+
# in case the visual features are on CPU, cast them to CUDA
|
172 |
+
pix_feat = pix_feat.to(masks.device)
|
173 |
+
|
174 |
+
x = self.pix_feat_proj(pix_feat)
|
175 |
+
x = x + masks
|
176 |
+
x = self.fuser(x)
|
177 |
+
x = self.out_proj(x)
|
178 |
+
|
179 |
+
pos = self.position_encoding(x).to(x.dtype)
|
180 |
+
|
181 |
+
return {"vision_features": x, "vision_pos_enc": [pos]}
|
sam2/modeling/position_encoding.py
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import math
|
8 |
+
from typing import Any, Optional, Tuple
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
|
12 |
+
import torch
|
13 |
+
from torch import nn
|
14 |
+
|
15 |
+
|
16 |
+
class PositionEmbeddingSine(nn.Module):
|
17 |
+
"""
|
18 |
+
This is a more standard version of the position embedding, very similar to the one
|
19 |
+
used by the Attention Is All You Need paper, generalized to work on images.
|
20 |
+
"""
|
21 |
+
|
22 |
+
def __init__(
|
23 |
+
self,
|
24 |
+
num_pos_feats,
|
25 |
+
temperature: int = 10000,
|
26 |
+
normalize: bool = True,
|
27 |
+
scale: Optional[float] = None,
|
28 |
+
# Following settings only relevant
|
29 |
+
# for warmping up cache for compilation
|
30 |
+
warmup_cache: bool = True,
|
31 |
+
image_size: int = 1024,
|
32 |
+
strides: Tuple[int] = (4, 8, 16, 32),
|
33 |
+
):
|
34 |
+
super().__init__()
|
35 |
+
assert num_pos_feats % 2 == 0, "Expecting even model width"
|
36 |
+
self.num_pos_feats = num_pos_feats // 2
|
37 |
+
self.temperature = temperature
|
38 |
+
self.normalize = normalize
|
39 |
+
if scale is not None and normalize is False:
|
40 |
+
raise ValueError("normalize should be True if scale is passed")
|
41 |
+
if scale is None:
|
42 |
+
scale = 2 * math.pi
|
43 |
+
self.scale = scale
|
44 |
+
|
45 |
+
self.cache = {}
|
46 |
+
if warmup_cache and torch.cuda.is_available():
|
47 |
+
# Warmup cache for cuda, to help with compilation
|
48 |
+
device = torch.device("cuda")
|
49 |
+
for stride in strides:
|
50 |
+
cache_key = (image_size // stride, image_size // stride)
|
51 |
+
self._pe(1, device, *cache_key)
|
52 |
+
|
53 |
+
def _encode_xy(self, x, y):
|
54 |
+
# The positions are expected to be normalized
|
55 |
+
assert len(x) == len(y) and x.ndim == y.ndim == 1
|
56 |
+
x_embed = x * self.scale
|
57 |
+
y_embed = y * self.scale
|
58 |
+
|
59 |
+
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
|
60 |
+
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
|
61 |
+
|
62 |
+
pos_x = x_embed[:, None] / dim_t
|
63 |
+
pos_y = y_embed[:, None] / dim_t
|
64 |
+
pos_x = torch.stack(
|
65 |
+
(pos_x[:, 0::2].sin(), pos_x[:, 1::2].cos()), dim=2
|
66 |
+
).flatten(1)
|
67 |
+
pos_y = torch.stack(
|
68 |
+
(pos_y[:, 0::2].sin(), pos_y[:, 1::2].cos()), dim=2
|
69 |
+
).flatten(1)
|
70 |
+
return pos_x, pos_y
|
71 |
+
|
72 |
+
@torch.no_grad()
|
73 |
+
def encode_boxes(self, x, y, w, h):
|
74 |
+
pos_x, pos_y = self._encode_xy(x, y)
|
75 |
+
pos = torch.cat((pos_y, pos_x, h[:, None], w[:, None]), dim=1)
|
76 |
+
return pos
|
77 |
+
|
78 |
+
encode = encode_boxes # Backwards compatibility
|
79 |
+
|
80 |
+
@torch.no_grad()
|
81 |
+
def encode_points(self, x, y, labels):
|
82 |
+
(bx, nx), (by, ny), (bl, nl) = x.shape, y.shape, labels.shape
|
83 |
+
assert bx == by and nx == ny and bx == bl and nx == nl
|
84 |
+
pos_x, pos_y = self._encode_xy(x.flatten(), y.flatten())
|
85 |
+
pos_x, pos_y = pos_x.reshape(bx, nx, -1), pos_y.reshape(by, ny, -1)
|
86 |
+
pos = torch.cat((pos_y, pos_x, labels[:, :, None]), dim=2)
|
87 |
+
return pos
|
88 |
+
|
89 |
+
@torch.no_grad()
|
90 |
+
def _pe(self, B, device, *cache_key):
|
91 |
+
H, W = cache_key
|
92 |
+
if cache_key in self.cache:
|
93 |
+
return self.cache[cache_key].to(device)[None].repeat(B, 1, 1, 1)
|
94 |
+
|
95 |
+
y_embed = (
|
96 |
+
torch.arange(1, H + 1, dtype=torch.float32, device=device)
|
97 |
+
.view(1, -1, 1)
|
98 |
+
.repeat(B, 1, W)
|
99 |
+
)
|
100 |
+
x_embed = (
|
101 |
+
torch.arange(1, W + 1, dtype=torch.float32, device=device)
|
102 |
+
.view(1, 1, -1)
|
103 |
+
.repeat(B, H, 1)
|
104 |
+
)
|
105 |
+
|
106 |
+
if self.normalize:
|
107 |
+
eps = 1e-6
|
108 |
+
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
|
109 |
+
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
|
110 |
+
|
111 |
+
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=device)
|
112 |
+
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
|
113 |
+
|
114 |
+
pos_x = x_embed[:, :, :, None] / dim_t
|
115 |
+
pos_y = y_embed[:, :, :, None] / dim_t
|
116 |
+
pos_x = torch.stack(
|
117 |
+
(pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4
|
118 |
+
).flatten(3)
|
119 |
+
pos_y = torch.stack(
|
120 |
+
(pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4
|
121 |
+
).flatten(3)
|
122 |
+
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
|
123 |
+
self.cache[cache_key] = pos[0]
|
124 |
+
return pos
|
125 |
+
|
126 |
+
@torch.no_grad()
|
127 |
+
def forward(self, x: torch.Tensor):
|
128 |
+
B = x.shape[0]
|
129 |
+
cache_key = (x.shape[-2], x.shape[-1])
|
130 |
+
return self._pe(B, x.device, *cache_key)
|
131 |
+
|
132 |
+
|
133 |
+
class PositionEmbeddingRandom(nn.Module):
|
134 |
+
"""
|
135 |
+
Positional encoding using random spatial frequencies.
|
136 |
+
"""
|
137 |
+
|
138 |
+
def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None:
|
139 |
+
super().__init__()
|
140 |
+
if scale is None or scale <= 0.0:
|
141 |
+
scale = 1.0
|
142 |
+
self.register_buffer(
|
143 |
+
"positional_encoding_gaussian_matrix",
|
144 |
+
scale * torch.randn((2, num_pos_feats)),
|
145 |
+
)
|
146 |
+
|
147 |
+
def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor:
|
148 |
+
"""Positionally encode points that are normalized to [0,1]."""
|
149 |
+
# assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
|
150 |
+
coords = 2 * coords - 1
|
151 |
+
coords = coords @ self.positional_encoding_gaussian_matrix
|
152 |
+
coords = 2 * np.pi * coords
|
153 |
+
# outputs d_1 x ... x d_n x C shape
|
154 |
+
return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1)
|
155 |
+
|
156 |
+
def forward(self, size: Tuple[int, int]) -> torch.Tensor:
|
157 |
+
"""Generate positional encoding for a grid of the specified size."""
|
158 |
+
h, w = size
|
159 |
+
device: Any = self.positional_encoding_gaussian_matrix.device
|
160 |
+
grid = torch.ones((h, w), device=device, dtype=torch.float32)
|
161 |
+
y_embed = grid.cumsum(dim=0) - 0.5
|
162 |
+
x_embed = grid.cumsum(dim=1) - 0.5
|
163 |
+
y_embed = y_embed / h
|
164 |
+
x_embed = x_embed / w
|
165 |
+
|
166 |
+
pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1))
|
167 |
+
return pe.permute(2, 0, 1) # C x H x W
|
168 |
+
|
169 |
+
def forward_with_coords(
|
170 |
+
self, coords_input: torch.Tensor, image_size: Tuple[int, int]
|
171 |
+
) -> torch.Tensor:
|
172 |
+
"""Positionally encode points that are not normalized to [0,1]."""
|
173 |
+
coords = coords_input.clone()
|
174 |
+
coords[:, :, 0] = coords[:, :, 0] / image_size[1]
|
175 |
+
coords[:, :, 1] = coords[:, :, 1] / image_size[0]
|
176 |
+
return self._pe_encoding(coords.to(torch.float)) # B x N x C
|
177 |
+
|
178 |
+
|
179 |
+
# Rotary Positional Encoding, adapted from:
|
180 |
+
# 1. https://github.com/meta-llama/codellama/blob/main/llama/model.py
|
181 |
+
# 2. https://github.com/naver-ai/rope-vit
|
182 |
+
# 3. https://github.com/lucidrains/rotary-embedding-torch
|
183 |
+
|
184 |
+
|
185 |
+
def init_t_xy(end_x: int, end_y: int):
|
186 |
+
t = torch.arange(end_x * end_y, dtype=torch.float32)
|
187 |
+
t_x = (t % end_x).float()
|
188 |
+
t_y = torch.div(t, end_x, rounding_mode="floor").float()
|
189 |
+
return t_x, t_y
|
190 |
+
|
191 |
+
|
192 |
+
def compute_axial_cis(dim: int, end_x: int, end_y: int, theta: float = 10000.0):
|
193 |
+
freqs_x = 1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float() / dim))
|
194 |
+
freqs_y = 1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float() / dim))
|
195 |
+
|
196 |
+
t_x, t_y = init_t_xy(end_x, end_y)
|
197 |
+
freqs_x = torch.outer(t_x, freqs_x)
|
198 |
+
freqs_y = torch.outer(t_y, freqs_y)
|
199 |
+
freqs_cis_x = torch.polar(torch.ones_like(freqs_x), freqs_x)
|
200 |
+
freqs_cis_y = torch.polar(torch.ones_like(freqs_y), freqs_y)
|
201 |
+
return torch.cat([freqs_cis_x, freqs_cis_y], dim=-1)
|
202 |
+
|
203 |
+
|
204 |
+
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
|
205 |
+
ndim = x.ndim
|
206 |
+
assert 0 <= 1 < ndim
|
207 |
+
assert freqs_cis.shape == (x.shape[-2], x.shape[-1])
|
208 |
+
shape = [d if i >= ndim - 2 else 1 for i, d in enumerate(x.shape)]
|
209 |
+
return freqs_cis.view(*shape)
|
210 |
+
|
211 |
+
|
212 |
+
def apply_rotary_enc(
|
213 |
+
xq: torch.Tensor,
|
214 |
+
xk: torch.Tensor,
|
215 |
+
freqs_cis: torch.Tensor,
|
216 |
+
repeat_freqs_k: bool = False,
|
217 |
+
):
|
218 |
+
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
|
219 |
+
xk_ = (
|
220 |
+
torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
|
221 |
+
if xk.shape[-2] != 0
|
222 |
+
else None
|
223 |
+
)
|
224 |
+
freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
|
225 |
+
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
|
226 |
+
if xk_ is None:
|
227 |
+
# no keys to rotate, due to dropout
|
228 |
+
return xq_out.type_as(xq).to(xq.device), xk
|
229 |
+
# repeat freqs along seq_len dim to match k seq_len
|
230 |
+
if repeat_freqs_k:
|
231 |
+
r = xk_.shape[-2] // xq_.shape[-2]
|
232 |
+
if freqs_cis.is_cuda:
|
233 |
+
freqs_cis = freqs_cis.repeat(*([1] * (freqs_cis.ndim - 2)), r, 1)
|
234 |
+
else:
|
235 |
+
# torch.repeat on complex numbers may not be supported on non-CUDA devices
|
236 |
+
# (freqs_cis has 4 dims and we repeat on dim 2) so we use expand + flatten
|
237 |
+
freqs_cis = freqs_cis.unsqueeze(2).expand(-1, -1, r, -1, -1).flatten(2, 3)
|
238 |
+
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
|
239 |
+
return xq_out.type_as(xq).to(xq.device), xk_out.type_as(xk).to(xk.device)
|
sam2/modeling/sam/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
sam2/modeling/sam/__pycache__/__init__.cpython-312.pyc
ADDED
Binary file (160 Bytes). View file
|
|
sam2/modeling/sam/__pycache__/mask_decoder.cpython-312.pyc
ADDED
Binary file (12.6 kB). View file
|
|
sam2/modeling/sam/__pycache__/prompt_encoder.cpython-312.pyc
ADDED
Binary file (9.89 kB). View file
|
|
sam2/modeling/sam/__pycache__/transformer.cpython-312.pyc
ADDED
Binary file (13.4 kB). View file
|
|