Spaces:
Running
on
Zero
Running
on
Zero
from fastapi import FastAPI, UploadFile, File, Response | |
import cv2 | |
import numpy as np | |
import torch | |
import torchvision.transforms as T | |
from PIL import Image | |
import io | |
app = FastAPI() | |
# Load AI Model MiDaS | |
midas = torch.hub.load("intel-isl/MiDaS", "MiDaS_small") | |
midas.eval() | |
transform = T.Compose([ | |
T.Resize((256, 256)), | |
T.ToTensor(), | |
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |
]) | |
async def upload_image(file: UploadFile = File(...)): | |
try: | |
start_time = time.time() | |
image_bytes = await file.read() | |
print(f"📷 Ảnh nhận được ({len(image_bytes)} bytes)") | |
image = Image.open(io.BytesIO(image_bytes)).convert("RGB") | |
print("✅ Ảnh mở thành công!") | |
image = image.transpose(Image.FLIP_TOP_BOTTOM) | |
image = image.transpose(Image.FLIP_LEFT_RIGHT) | |
# Chuyển đổi ảnh sang tensor | |
img_tensor = transform(image).unsqueeze(0) | |
with torch.no_grad(): | |
depth_map = midas(img_tensor).squeeze().cpu().numpy() | |
# Chuẩn hóa depth map | |
depth_map = cv2.normalize(depth_map, None, 0, 255, cv2.NORM_MINMAX).astype(np.uint8) | |
depth_resized = cv2.resize(depth_map, (160, 120)) | |
# Mã hóa ảnh thành JPEG | |
_, buffer = cv2.imencode(".jpg", depth_resized) | |
print("✅ Depth Map đã được tạo!") | |
end_time = time.time() | |
start_detect_time = time.time() | |
command = detect_path(depth_map) | |
end_detect_time = time.time() | |
print(f"⏳ detect_path() xử lý trong {end_detect_time - start_detect_time:.4f} giây") | |
return {"command": command} | |
except Exception as e: | |
print("❌ Lỗi xử lý ảnh:", str(e)) | |
return {"error": str(e)} | |
def detect_path(depth_map): | |
"""Phân tích đường đi từ ảnh Depth Map""" | |
h, w = depth_map.shape | |
center_x = w // 2 | |
scan_y = int(h * 0.8) # Quét dòng 80% từ trên xuống | |
left_region = np.mean(depth_map[scan_y, :center_x]) | |
right_region = np.mean(depth_map[scan_y, center_x:]) | |
center_region = np.mean(depth_map[scan_y, center_x - 40:center_x + 40]) | |
# 🟢 Cải thiện logic xử lý | |
threshold = 100 # Ngưỡng phân biệt vật cản | |
if center_region > threshold: | |
return "forward" | |
elif left_region > right_region: | |
return "left" | |
elif right_region > left_region: | |
return "right" | |
else: | |
return "backward" | |
if __name__ == "__main__": | |
import uvicorn | |
uvicorn.run(app, host="0.0.0.0", port=7860) |