Spaces:
Running
on
Zero
Running
on
Zero
File size: 19,151 Bytes
7d4b8c8 5721737 7d4b8c8 6fa3be1 7d4b8c8 e3ad07e 6fa3be1 7d4b8c8 6fa3be1 7d4b8c8 a350cc0 7d4b8c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 |
import gradio as gr
import os
from PIL import Image
import torch
from diffusers.utils import check_min_version
from pipeline_objectclear import ObjectClearPipeline
from tools.download_util import load_file_from_url
from tools.painter import mask_painter
import argparse
import numpy as np
import torchvision.transforms.functional as TF
from scipy.ndimage import convolve, zoom
import spaces
from utils import resize_by_short_side
from tools.interact_tools import SamControler
from tools.misc import get_device
import json
check_min_version("0.30.2")
def parse_augment():
parser = argparse.ArgumentParser()
parser.add_argument('--device', type=str, default=None)
parser.add_argument('--sam_model_type', type=str, default="vit_h")
parser.add_argument('--port', type=int, default=8000, help="only useful when running gradio applications")
args = parser.parse_args()
if not args.device:
args.device = str(get_device())
return args
# convert points input to prompt state
def get_prompt(click_state, click_input):
inputs = json.loads(click_input)
points = click_state[0]
labels = click_state[1]
for input in inputs:
points.append(input[:2])
labels.append(input[2])
click_state[0] = points
click_state[1] = labels
prompt = {
"prompt_type":["click"],
"input_point":click_state[0],
"input_label":click_state[1],
"multimask_output":"True",
}
return prompt
# use sam to get the mask
@spaces.GPU
def sam_refine(image_state, point_prompt, click_state, evt:gr.SelectData):
if point_prompt == "Positive":
coordinate = "[[{},{},1]]".format(evt.index[0], evt.index[1])
else:
coordinate = "[[{},{},0]]".format(evt.index[0], evt.index[1])
# prompt for sam model
model.samcontroler.sam_controler.reset_image()
model.samcontroler.sam_controler.set_image(image_state["origin_image"])
prompt = get_prompt(click_state=click_state, click_input=coordinate)
mask, logit, painted_image = model.first_frame_click(
image=image_state["origin_image"],
points=np.array(prompt["input_point"]),
labels=np.array(prompt["input_label"]),
multimask=prompt["multimask_output"],
)
image_state["mask"] = mask
image_state["logit"] = logit
image_state["painted_image"] = painted_image
return painted_image, image_state, click_state
def add_multi_mask(image_state, interactive_state, mask_dropdown):
mask = image_state["mask"]
interactive_state["masks"].append(mask)
interactive_state["mask_names"].append("mask_{:03d}".format(len(interactive_state["masks"])))
mask_dropdown.append("mask_{:03d}".format(len(interactive_state["masks"])))
select_frame = show_mask(image_state, interactive_state, mask_dropdown)
return interactive_state, gr.update(choices=interactive_state["mask_names"], value=mask_dropdown), select_frame, [[],[]]
def clear_click(image_state, click_state):
click_state = [[],[]]
input_image = image_state["origin_image"]
return input_image, click_state
def remove_multi_mask(interactive_state, click_state, image_state):
interactive_state["mask_names"]= []
interactive_state["masks"] = []
click_state = [[],[]]
input_image = image_state["origin_image"]
return interactive_state, gr.update(choices=[],value=[]), input_image, click_state
def show_mask(image_state, interactive_state, mask_dropdown):
mask_dropdown.sort()
if image_state["origin_image"] is not None:
select_frame = image_state["origin_image"]
for i in range(len(mask_dropdown)):
mask_number = int(mask_dropdown[i].split("_")[1]) - 1
mask = interactive_state["masks"][mask_number]
select_frame = mask_painter(select_frame, mask.astype('uint8'), mask_color=mask_number+2)
return select_frame
@spaces.GPU
def upload_and_reset(image_input, interactive_state):
click_state = [[], []]
interactive_state["mask_names"]= []
interactive_state["masks"] = []
image_state, image_info, image_input = update_image_state_on_upload(image_input)
return (
image_state,
image_info,
image_input,
interactive_state,
click_state,
gr.update(choices=[], value=[]),
)
def update_image_state_on_upload(image_input):
frame = image_input
image_size = (frame.size[1], frame.size[0])
frame_np = np.array(frame)
image_state = {
"origin_image": frame_np,
"painted_image": frame_np.copy(),
"mask": np.zeros((image_size[0], image_size[1]), np.uint8),
"logit": None,
}
image_info = f"Image Name: uploaded.png,\nImage Size: {image_size}"
model.samcontroler.sam_controler.reset_image()
model.samcontroler.sam_controler.set_image(frame_np)
return image_state, image_info, image_input
# SAM generator
class MaskGenerator():
def __init__(self, sam_checkpoint, args):
self.args = args
self.samcontroler = SamControler(sam_checkpoint, args.sam_model_type, args.device)
def first_frame_click(self, image: np.ndarray, points:np.ndarray, labels: np.ndarray, multimask=True):
mask, logit, painted_image = self.samcontroler.first_frame_click(image, points, labels, multimask)
return mask, logit, painted_image
# args, defined in track_anything.py
args = parse_augment()
sam_checkpoint_url_dict = {
'vit_h': "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth",
'vit_l': "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth",
'vit_b': "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth"
}
checkpoint_folder = os.path.join('/home/user/app/', 'pretrained_models')
sam_checkpoint = load_file_from_url(sam_checkpoint_url_dict[args.sam_model_type], checkpoint_folder)
# initialize sams
model = MaskGenerator(sam_checkpoint, args)
# Build pipeline
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
pipe = ObjectClearPipeline.from_pretrained_with_custom_modules(
"jixin0101/ObjectClear",
torch_dtype=torch.float16,
variant='fp16',
apply_attention_guided_fusion=True
)
pipe.to(device)
@spaces.GPU
def process(image_state, interactive_state, mask_dropdown, guidance_scale, seed, num_inference_steps, strength
):
generator = torch.Generator(device="cuda").manual_seed(seed)
image_np = image_state["origin_image"]
image = Image.fromarray(image_np)
if interactive_state["masks"]:
if len(mask_dropdown) == 0:
mask_dropdown = ["mask_001"]
mask_dropdown.sort()
template_mask = interactive_state["masks"][int(mask_dropdown[0].split("_")[1]) - 1] * (int(mask_dropdown[0].split("_")[1]))
for i in range(1,len(mask_dropdown)):
mask_number = int(mask_dropdown[i].split("_")[1]) - 1
template_mask = np.clip(template_mask+interactive_state["masks"][mask_number]*(mask_number+1), 0, mask_number+1)
image_state["mask"]= template_mask
else:
template_mask = image_state["mask"]
mask = Image.fromarray((template_mask).astype(np.uint8) * 255)
image_or = image.copy()
image = image.convert("RGB")
mask = mask.convert("RGB")
image = resize_by_short_side(image, 512, resample=Image.BICUBIC)
mask = resize_by_short_side(mask, 512, resample=Image.NEAREST)
w, h = image.size
result = pipe(
prompt="remove the instance of object",
image=image,
mask_image=mask,
generator=generator,
num_inference_steps=num_inference_steps,
strength=strength,
guidance_scale=guidance_scale,
height=h,
width=w,
)
fused_img_pil = result.images[0]
return fused_img_pil.resize((image_or.size[:2])), (image.resize((image_or.size[:2])), fused_img_pil.resize((image_or.size[:2])))
import base64
with open("./Logo.png", "rb") as f:
img_bytes = f.read()
img_b64 = base64.b64encode(img_bytes).decode()
html_img = f'''
<div style="display:flex; justify-content:center; align-items:center; width:100%;">
<img src="data:image/png;base64,{img_b64}" style="border:none; width:200px; height:auto;"/>
</div>
'''
tutorial_url = "https://github.com/zjx0101/ObjectClear/releases/download/media/tutorial.mp4"
assets_path = os.path.join('/home/user/app/hugging_face/', "assets/")
load_file_from_url(tutorial_url, assets_path)
description = r"""
<b>Official Gradio demo</b> for <a href='https://github.com/zjx0101/ObjectClear' target='_blank'><b>ObjectClear: Complete Object Removal via Object-Effect Attention</b></a>.<br>
π₯ ObjectClear is an object removal model that can jointly eliminate the target object and its associated effects leveraging Object-Effect Attention, while preserving background consistency.<br>
πΌοΈ Try to drop your image, assign the target masks with a few clicks, and get the object removal results!<br>
*Note: All input images are temporarily resized (shorter side = 512 pixels) during inference to match the training resolution. Final outputs are restored to the original resolution.<br>*
"""
article = r"""<h3>
<b>If ObjectClear is helpful, please help to star the <a href='https://github.com/zjx0101/ObjectClear' target='_blank'>Github Repo</a>. Thanks!</b></h3>
<hr>
π **Citation**
<br>
If our work is useful for your research, please consider citing:
```bibtex
@InProceedings{zhao2025ObjectClear,
title = {{ObjectClear}: Complete Object Removal via Object-Effect Attention},
author = {Zhao, Jixin and Zhou, Shangchen and Wang, Zhouxia and Yang, Peiqing and Loy, Chen Change},
booktitle = {arXiv preprint arXiv:2505.22636},
year = {2025}
}
```
π§ **Contact**
<br>
If you have any questions, please feel free to reach me out at <b>[email protected]</b>.
<br>
π **Acknowledgement**
<br>
This demo is adapted from [MatAnyone](https://github.com/pq-yang/MatAnyone), and leveraging segmentation capabilities from [Segment Anything](https://github.com/facebookresearch/segment-anything). Thanks for their awesome works!
"""
custom_css = """
#input-image {
aspect-ratio: 1 / 1;
width: 100%;
max-width: 100%;
height: auto;
display: flex;
align-items: center;
justify-content: center;
}
#input-image img {
max-width: 100%;
max-height: 100%;
object-fit: contain;
display: block;
}
#main-columns {
gap: 60px;
}
#main-columns > .gr-column {
flex: 1;
}
#compare-image {
width: 100%;
aspect-ratio: 1 / 1;
display: flex;
align-items: center;
justify-content: center;
margin: 0;
padding: 0;
max-width: 100%;
box-sizing: border-box;
}
#compare-image svg.svelte-zyxd38 {
position: absolute !important;
top: 50% !important;
left: 50% !important;
transform: translate(-50%, -50%) !important;
}
#compare-image .icon.svelte-1oiin9d {
position: absolute;
top: 50%;
left: 50%;
transform: translate(-50%, -50%);
}
#compare-image {
position: relative;
overflow: hidden;
}
.new_button {background-color: #171717 !important; color: #ffffff !important; border: none !important;}
.new_button:hover {background-color: #4b4b4b !important;}
#start-button {
background: linear-gradient(135deg, #2575fc 0%, #6a11cb 100%);
color: white;
border: none;
padding: 12px 24px;
font-size: 16px;
font-weight: bold;
border-radius: 12px;
cursor: pointer;
box-shadow: 0 0 12px rgba(100, 100, 255, 0.7);
transition: all 0.3s ease;
}
#start-button:hover {
transform: scale(1.05);
box-shadow: 0 0 20px rgba(100, 100, 255, 1);
}
<style>
.button-wrapper {
width: 30%;
text-align: center;
}
.wide-button {
width: 83% !important;
background-color: black !important;
color: white !important;
border: none !important;
padding: 8px 0 !important;
font-size: 16px !important;
display: inline-block;
margin: 30px 0px 0px 50px ;
}
.wide-button:hover {
background-color: #656262 !important;
}
</style>
"""
with gr.Blocks(css=custom_css) as demo:
gr.HTML(html_img)
gr.Markdown(description)
with gr.Group(elem_classes="gr-monochrome-group", visible=True):
with gr.Row():
with gr.Accordion('SAM Settings (click to expand)', open=False):
with gr.Row():
point_prompt = gr.Radio(
choices=["Positive", "Negative"],
value="Positive",
label="Point Prompt",
info="Click to add positive or negative point for target mask",
interactive=True,
min_width=100,
scale=1)
mask_dropdown = gr.Dropdown(multiselect=True, value=[], label="Mask Selection", info="Choose 1~all mask(s) added in Step 2")
with gr.Row(elem_id="main-columns"):
with gr.Column():
click_state = gr.State([[],[]])
interactive_state = gr.State(
{
"mask_names": [],
"masks": []
}
)
image_state = gr.State(
{
"origin_image": None,
"painted_image": None,
"mask": None,
"logit": None
}
)
image_info = gr.Textbox(label="Image Info", visible=False)
input_image = gr.Image(
label='Input',
type='pil',
sources=["upload"],
image_mode='RGB',
interactive=True,
elem_id="input-image"
)
with gr.Row(equal_height=True, elem_classes="mask_button_group"):
clear_button_click = gr.Button(value="Clear Clicks",elem_classes="new_button", min_width=100)
add_mask_button = gr.Button(value="Add Mask", elem_classes="new_button", min_width=100)
remove_mask_button = gr.Button(value="Delete Mask", elem_classes="new_button", min_width=100)
submit_button_component = gr.Button(
value='Start ObjectClear', elem_id="start-button"
)
with gr.Accordion('ObjectClear Settings', open=True):
strength = gr.Radio(
choices=[0.99, 1.0],
value=0.99,
label="Strength",
info="0.99 better preserves the background and color; use 1.0 if object/shadow is not fully removed (default: 0.99)"
)
guidance_scale = gr.Slider(
minimum=1, maximum=10, step=0.5, value=2.5,
label="Guidance Scale",
info="Higher = stronger removal; lower = better background preservation (default: 2.5)"
)
seed = gr.Slider(
minimum=0, maximum=1000000, step=1, value=300000,
label="Seed Value",
info="Different seeds can lead to noticeably different object removal results (default: 300000)"
)
num_inference_steps = gr.Slider(
minimum=1, maximum=40, step=1, value=20,
label="Num Inference Steps",
info="Higher values may improve quality but take longer (default: 20)"
)
with gr.Column():
output_image_component = gr.Image(
type='pil', image_mode='RGB', label='Output', format="png", elem_id="input-image")
output_compare_image_component = gr.ImageSlider(
label="Comparison",
type="pil",
format='png',
elem_id="compare-image"
)
input_image.upload(
fn=upload_and_reset,
inputs=[input_image, interactive_state],
outputs=[
image_state,
image_info,
input_image,
interactive_state,
click_state,
mask_dropdown,
]
)
# click select image to get mask using sam
input_image.select(
fn=sam_refine,
inputs=[image_state, point_prompt, click_state],
outputs=[input_image, image_state, click_state]
)
# add different mask
add_mask_button.click(
fn=add_multi_mask,
inputs=[image_state, interactive_state, mask_dropdown],
outputs=[interactive_state, mask_dropdown, input_image, click_state]
)
remove_mask_button.click(
fn=remove_multi_mask,
inputs=[interactive_state, click_state, image_state],
outputs=[interactive_state, mask_dropdown, input_image, click_state]
)
# points clear
clear_button_click.click(
fn = clear_click,
inputs = [image_state, click_state,],
outputs = [input_image, click_state],
)
submit_button_component.click(
fn=process,
inputs=[
image_state,
interactive_state,
mask_dropdown,
guidance_scale,
seed,
num_inference_steps,
strength
],
outputs=[
output_image_component, output_compare_image_component
]
)
with gr.Accordion("π Video Tutorial (click to expand)", open=False, elem_classes="custom-bg"):
with gr.Row():
gr.Video(value="/home/user/app/hugging_face/assets/tutorial.mp4", elem_classes="video")
gr.Markdown("---")
gr.Markdown("## Examples")
example_images = [
os.path.join(os.path.dirname(__file__), "examples", f"test{i}.png")
for i in range(10)
]
examples_data = [
[example_images[i], None] for i in range(len(example_images))
]
examples = gr.Examples(
examples=examples_data,
inputs=[input_image, interactive_state],
outputs=[image_state, image_info, input_image,
interactive_state, click_state, mask_dropdown],
fn=upload_and_reset,
run_on_click=True,
cache_examples=False,
label="Click below to load example images"
)
gr.Markdown(article)
def pre_update_input_image():
return gr.update(value=None)
demo.load(
fn=pre_update_input_image,
inputs=[],
outputs=[input_image]
)
demo.launch(debug=True, show_error=True) |