ObjectClear / app.py
jixin0101's picture
Add variant argument to support loading fp16 model
e3ad07e
raw
history blame
23 kB
import gradio as gr
import os
from PIL import Image
import torch
from diffusers.utils import load_image, check_min_version
from pipeline_objectclear import ObjectClearPipeline
from tools.download_util import load_file_from_url
from tools.painter import mask_painter
import argparse
from safetensors.torch import load_file
from model import CLIPImageEncoder, PostfuseModule
import numpy as np
import torchvision.transforms.functional as TF
from scipy.ndimage import convolve, zoom
import cv2
import time
from huggingface_hub import hf_hub_download
import spaces
from tools.interact_tools import SamControler
from tools.misc import get_device
import json
check_min_version("0.30.2")
def parse_augment():
parser = argparse.ArgumentParser()
parser.add_argument('--device', type=str, default=None)
parser.add_argument('--sam_model_type', type=str, default="vit_h")
parser.add_argument('--port', type=int, default=8000, help="only useful when running gradio applications")
args = parser.parse_args()
if not args.device:
args.device = str(get_device())
return args
def pad_to_multiple(image: np.ndarray, multiple: int = 8):
h, w = image.shape[:2]
pad_h = (multiple - h % multiple) % multiple
pad_w = (multiple - w % multiple) % multiple
if image.ndim == 3:
padded = np.pad(image, ((0, pad_h), (0, pad_w), (0,0)), mode='reflect')
else:
padded = np.pad(image, ((0, pad_h), (0, pad_w)), mode='reflect')
return padded, h, w
def crop_to_original(image: np.ndarray, h: int, w: int):
return image[:h, :w]
def wavelet_blur_np(image: np.ndarray, radius: int):
kernel = np.array([
[0.0625, 0.125, 0.0625],
[0.125, 0.25, 0.125],
[0.0625, 0.125, 0.0625]
], dtype=np.float32)
blurred = np.empty_like(image)
for c in range(image.shape[0]):
blurred_c = convolve(image[c], kernel, mode='nearest')
if radius > 1:
blurred_c = zoom(zoom(blurred_c, 1 / radius, order=1), radius, order=1)
blurred[c] = blurred_c
return blurred
def wavelet_decomposition_np(image: np.ndarray, levels=5):
high_freq = np.zeros_like(image)
for i in range(levels):
radius = 2 ** i
low_freq = wavelet_blur_np(image, radius)
high_freq += (image - low_freq)
image = low_freq
return high_freq, low_freq
def wavelet_reconstruction_np(content_feat: np.ndarray, style_feat: np.ndarray):
content_high, _ = wavelet_decomposition_np(content_feat)
_, style_low = wavelet_decomposition_np(style_feat)
return content_high + style_low
def wavelet_color_fix_np(fused: np.ndarray, mask: np.ndarray) -> np.ndarray:
fused_np = fused.astype(np.float32) / 255.0
mask_np = mask.astype(np.float32) / 255.0
fused_np = fused_np.transpose(2, 0, 1)
mask_np = mask_np.transpose(2, 0, 1)
result_np = wavelet_reconstruction_np(fused_np, mask_np)
result_np = result_np.transpose(1, 2, 0)
result_np = np.clip(result_np * 255.0, 0, 255).astype(np.uint8)
return result_np
def fuse_with_wavelet(ori: np.ndarray, removed: np.ndarray, attn_map: np.ndarray, multiple: int = 8):
H, W = ori.shape[:2]
attn_map = attn_map.astype(np.float32)
_, attn_map = cv2.threshold(attn_map, 128, 255, cv2.THRESH_BINARY)
am = attn_map.astype(np.float32)
am = am/255.0
am_up = cv2.resize(am, (W, H), interpolation=cv2.INTER_NEAREST)
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (21,21))
am_d = cv2.dilate(am_up, kernel, iterations=1)
am_d = cv2.GaussianBlur(am_d.astype(np.float32), (9,9), sigmaX=2)
am_merged = np.maximum(am_up, am_d)
am_merged = np.clip(am_merged, 0, 1)
attn_up_3c = np.stack([am_merged]*3, axis=-1)
attn_up_ori_3c = np.stack([am_up]*3, axis=-1)
ori_out = ori * (1 - attn_up_ori_3c)
rem_out = removed * (1 - attn_up_ori_3c)
ori_pad, h0, w0 = pad_to_multiple(ori_out, multiple)
rem_pad, _, _ = pad_to_multiple(rem_out, multiple)
wave_rgb = wavelet_color_fix_np(ori_pad, rem_pad)
wave = crop_to_original(wave_rgb, h0, w0)
# fusion
fused = (wave * (1 - attn_up_3c) + removed * attn_up_3c).astype(np.uint8)
return fused
def resize_by_short_side(image, target_short=512, resample=Image.BICUBIC):
w, h = image.size
if w < h:
new_w = target_short
new_h = int(h * target_short / w)
new_h = (new_h + 15) // 16 * 16
else:
new_h = target_short
new_w = int(w * target_short / h)
new_w = (new_w + 15) // 16 * 16
return image.resize((new_w, new_h), resample=resample)
# convert points input to prompt state
def get_prompt(click_state, click_input):
inputs = json.loads(click_input)
points = click_state[0]
labels = click_state[1]
for input in inputs:
points.append(input[:2])
labels.append(input[2])
click_state[0] = points
click_state[1] = labels
prompt = {
"prompt_type":["click"],
"input_point":click_state[0],
"input_label":click_state[1],
"multimask_output":"True",
}
return prompt
# use sam to get the mask
@spaces.GPU
def sam_refine(image_state, point_prompt, click_state, evt:gr.SelectData):
if point_prompt == "Positive":
coordinate = "[[{},{},1]]".format(evt.index[0], evt.index[1])
else:
coordinate = "[[{},{},0]]".format(evt.index[0], evt.index[1])
# prompt for sam model
model.samcontroler.sam_controler.reset_image()
model.samcontroler.sam_controler.set_image(image_state["origin_image"])
prompt = get_prompt(click_state=click_state, click_input=coordinate)
mask, logit, painted_image = model.first_frame_click(
image=image_state["origin_image"],
points=np.array(prompt["input_point"]),
labels=np.array(prompt["input_label"]),
multimask=prompt["multimask_output"],
)
image_state["mask"] = mask
image_state["logit"] = logit
image_state["painted_image"] = painted_image
return painted_image, image_state, click_state
def add_multi_mask(image_state, interactive_state, mask_dropdown):
mask = image_state["mask"]
interactive_state["masks"].append(mask)
interactive_state["mask_names"].append("mask_{:03d}".format(len(interactive_state["masks"])))
mask_dropdown.append("mask_{:03d}".format(len(interactive_state["masks"])))
select_frame = show_mask(image_state, interactive_state, mask_dropdown)
return interactive_state, gr.update(choices=interactive_state["mask_names"], value=mask_dropdown), select_frame, [[],[]]
def clear_click(image_state, click_state):
click_state = [[],[]]
input_image = image_state["origin_image"]
return input_image, click_state
def remove_multi_mask(interactive_state, click_state, image_state):
interactive_state["mask_names"]= []
interactive_state["masks"] = []
click_state = [[],[]]
input_image = image_state["origin_image"]
return interactive_state, gr.update(choices=[],value=[]), input_image, click_state
def show_mask(image_state, interactive_state, mask_dropdown):
mask_dropdown.sort()
if image_state["origin_image"] is not None:
select_frame = image_state["origin_image"]
for i in range(len(mask_dropdown)):
mask_number = int(mask_dropdown[i].split("_")[1]) - 1
mask = interactive_state["masks"][mask_number]
select_frame = mask_painter(select_frame, mask.astype('uint8'), mask_color=mask_number+2)
return select_frame
@spaces.GPU
def upload_and_reset(image_input, interactive_state):
click_state = [[], []]
interactive_state["mask_names"]= []
interactive_state["masks"] = []
image_state, image_info, image_input = update_image_state_on_upload(image_input)
return (
image_state,
image_info,
image_input,
interactive_state,
click_state,
gr.update(choices=[], value=[]),
)
def update_image_state_on_upload(image_input):
frame = image_input
image_size = (frame.size[1], frame.size[0])
frame_np = np.array(frame)
image_state = {
"origin_image": frame_np,
"painted_image": frame_np.copy(),
"mask": np.zeros((image_size[0], image_size[1]), np.uint8),
"logit": None,
}
image_info = f"Image Name: uploaded.png,\nImage Size: {image_size}"
model.samcontroler.sam_controler.reset_image()
model.samcontroler.sam_controler.set_image(frame_np)
return image_state, image_info, image_input
# SAM generator
class MaskGenerator():
def __init__(self, sam_checkpoint, args):
self.args = args
self.samcontroler = SamControler(sam_checkpoint, args.sam_model_type, args.device)
def first_frame_click(self, image: np.ndarray, points:np.ndarray, labels: np.ndarray, multimask=True):
mask, logit, painted_image = self.samcontroler.first_frame_click(image, points, labels, multimask)
return mask, logit, painted_image
# args, defined in track_anything.py
args = parse_augment()
sam_checkpoint_url_dict = {
'vit_h': "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth",
'vit_l': "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth",
'vit_b': "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth"
}
checkpoint_folder = os.path.join('/home/user/app/', 'pretrained_models')
sam_checkpoint = load_file_from_url(sam_checkpoint_url_dict[args.sam_model_type], checkpoint_folder)
# initialize sams
model = MaskGenerator(sam_checkpoint, args)
# Build pipeline
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
pipe = ObjectClearPipeline.from_pretrained_with_custom_modules(
"jixin0101/ObjectClear",
torch_dtype=torch.float16,
variant='fp16',
save_cross_attn=True,
cache_dir="/home/jovyan/shared/jixinzhao/models",
)
pipe.to(device)
@spaces.GPU
def process(image_state, interactive_state, mask_dropdown, guidance_scale, seed, num_inference_steps, strength
):
generator = torch.Generator(device="cuda").manual_seed(seed)
image_np = image_state["origin_image"]
image = Image.fromarray(image_np)
if interactive_state["masks"]:
if len(mask_dropdown) == 0:
mask_dropdown = ["mask_001"]
mask_dropdown.sort()
template_mask = interactive_state["masks"][int(mask_dropdown[0].split("_")[1]) - 1] * (int(mask_dropdown[0].split("_")[1]))
for i in range(1,len(mask_dropdown)):
mask_number = int(mask_dropdown[i].split("_")[1]) - 1
template_mask = np.clip(template_mask+interactive_state["masks"][mask_number]*(mask_number+1), 0, mask_number+1)
image_state["mask"]= template_mask
else:
template_mask = image_state["mask"]
mask = Image.fromarray((template_mask).astype(np.uint8) * 255)
image_or = image.copy()
image = image.convert("RGB")
mask = mask.convert("RGB")
image = resize_by_short_side(image, 512, resample=Image.BICUBIC)
mask = resize_by_short_side(mask, 512, resample=Image.NEAREST)
w, h = image.size
result = pipe(
prompt="remove the instance of object",
image=image,
mask_image=mask,
generator=generator,
num_inference_steps=num_inference_steps,
strength=strength,
guidance_scale=guidance_scale,
height=h,
width=w,
)
inpainted_img = result[0].images[0]
attn_map = result[1]
attn_np = attn_map.mean(dim=1)[0].cpu().numpy() * 255.
fused_img = fuse_with_wavelet(np.array(image), np.array(inpainted_img), attn_np)
fused_img_pil = Image.fromarray(fused_img.astype(np.uint8))
return fused_img_pil.resize((image_or.size[:2])), (image.resize((image_or.size[:2])), fused_img_pil.resize((image_or.size[:2])))
import base64
with open("./Logo.png", "rb") as f:
img_bytes = f.read()
img_b64 = base64.b64encode(img_bytes).decode()
html_img = f'''
<div style="display:flex; justify-content:center; align-items:center; width:100%;">
<img src="data:image/png;base64,{img_b64}" style="border:none; width:200px; height:auto;"/>
</div>
'''
tutorial_url = "https://github.com/zjx0101/ObjectClear/releases/download/media/tutorial.mp4"
assets_path = os.path.join('/home/user/app/hugging_face/', "assets/")
load_file_from_url(tutorial_url, assets_path)
description = r"""
<b>Official Gradio demo</b> for <a href='https://github.com/zjx0101/ObjectClear' target='_blank'><b>ObjectClear: Complete Object Removal via Object-Effect Attention</b></a>.<br>
🔥 ObjectClear is an object removal model that can jointly eliminate the target object and its associated effects leveraging Object-Effect Attention, while preserving background consistency.<br>
🖼️ Try to drop your image, assign the target masks with a few clicks, and get the object removal results!<br>
*Note: Due to online GPU memory constraints, all input images will be resized during inference so that the shortest side is 512 pixels.<br>*
"""
article = r"""<h3>
<b>If ObjectClear is helpful, please help to star the <a href='https://github.com/zjx0101/ObjectClear' target='_blank'>Github Repo</a>. Thanks!</b></h3>
<hr>
📑 **Citation**
<br>
If our work is useful for your research, please consider citing:
```bibtex
@InProceedings{zhao2025ObjectClear,
title = {{ObjectClear}: Complete Object Removal via Object-Effect Attention},
author = {Zhao, Jixin and Zhou, Shangchen and Wang, Zhouxia and Yang, Peiqing and Loy, Chen Change},
booktitle = {arXiv preprint arXiv:2505.22636},
year = {2025}
}
```
📧 **Contact**
<br>
If you have any questions, please feel free to reach me out at <b>[email protected]</b>.
<br>
👏 **Acknowledgement**
<br>
This demo is adapted from [MatAnyone](https://github.com/pq-yang/MatAnyone), and leveraging segmentation capabilities from [Segment Anything](https://github.com/facebookresearch/segment-anything). Thanks for their awesome works!
"""
custom_css = """
#input-image {
aspect-ratio: 1 / 1;
width: 100%;
max-width: 100%;
height: auto;
display: flex;
align-items: center;
justify-content: center;
}
#input-image img {
max-width: 100%;
max-height: 100%;
object-fit: contain;
display: block;
}
#main-columns {
gap: 60px;
}
#main-columns > .gr-column {
flex: 1;
}
#compare-image {
width: 100%;
aspect-ratio: 1 / 1;
display: flex;
align-items: center;
justify-content: center;
margin: 0;
padding: 0;
max-width: 100%;
box-sizing: border-box;
}
#compare-image svg.svelte-zyxd38 {
position: absolute !important;
top: 50% !important;
left: 50% !important;
transform: translate(-50%, -50%) !important;
}
#compare-image .icon.svelte-1oiin9d {
position: absolute;
top: 50%;
left: 50%;
transform: translate(-50%, -50%);
}
#compare-image {
position: relative;
overflow: hidden;
}
.new_button {background-color: #171717 !important; color: #ffffff !important; border: none !important;}
.new_button:hover {background-color: #4b4b4b !important;}
#start-button {
background: linear-gradient(135deg, #2575fc 0%, #6a11cb 100%);
color: white;
border: none;
padding: 12px 24px;
font-size: 16px;
font-weight: bold;
border-radius: 12px;
cursor: pointer;
box-shadow: 0 0 12px rgba(100, 100, 255, 0.7);
transition: all 0.3s ease;
}
#start-button:hover {
transform: scale(1.05);
box-shadow: 0 0 20px rgba(100, 100, 255, 1);
}
<style>
.button-wrapper {
width: 30%;
text-align: center;
}
.wide-button {
width: 83% !important;
background-color: black !important;
color: white !important;
border: none !important;
padding: 8px 0 !important;
font-size: 16px !important;
display: inline-block;
margin: 30px 0px 0px 50px ;
}
.wide-button:hover {
background-color: #656262 !important;
}
</style>
"""
with gr.Blocks(css=custom_css) as demo:
gr.HTML(html_img)
gr.Markdown(description)
with gr.Group(elem_classes="gr-monochrome-group", visible=True):
with gr.Row():
with gr.Accordion('SAM Settings (click to expand)', open=False):
with gr.Row():
point_prompt = gr.Radio(
choices=["Positive", "Negative"],
value="Positive",
label="Point Prompt",
info="Click to add positive or negative point for target mask",
interactive=True,
min_width=100,
scale=1)
mask_dropdown = gr.Dropdown(multiselect=True, value=[], label="Mask Selection", info="Choose 1~all mask(s) added in Step 2")
with gr.Row(elem_id="main-columns"):
with gr.Column():
click_state = gr.State([[],[]])
interactive_state = gr.State(
{
"mask_names": [],
"masks": []
}
)
image_state = gr.State(
{
"origin_image": None,
"painted_image": None,
"mask": None,
"logit": None
}
)
image_info = gr.Textbox(label="Image Info", visible=False)
input_image = gr.Image(
label='Input',
type='pil',
sources=["upload"],
image_mode='RGB',
interactive=True,
elem_id="input-image"
)
with gr.Row(equal_height=True, elem_classes="mask_button_group"):
clear_button_click = gr.Button(value="Clear Clicks",elem_classes="new_button", min_width=100)
add_mask_button = gr.Button(value="Add Mask", elem_classes="new_button", min_width=100)
remove_mask_button = gr.Button(value="Delete Mask", elem_classes="new_button", min_width=100)
submit_button_component = gr.Button(
value='Start ObjectClear', elem_id="start-button"
)
with gr.Accordion('ObjectClear Settings', open=True):
strength = gr.Radio(
choices=[0.99, 1.0],
value=0.99,
label="Strength",
info="0.99 better preserves the background and color; use 1.0 if object/shadow is not fully removed (default: 0.99)"
)
guidance_scale = gr.Slider(
minimum=1, maximum=10, step=0.5, value=2.5,
label="Guidance Scale",
info="Higher = stronger removal; lower = better background preservation (default: 2.5)"
)
seed = gr.Slider(
minimum=0, maximum=1000000, step=1, value=300000,
label="Seed Value",
info="Different seeds can lead to noticeably different object removal results (default: 300000)"
)
num_inference_steps = gr.Slider(
minimum=1, maximum=40, step=1, value=20,
label="Num Inference Steps",
info="Higher values may improve quality but take longer (default: 20)"
)
with gr.Column():
output_image_component = gr.Image(
type='pil', image_mode='RGB', label='Output', format="png", elem_id="input-image")
output_compare_image_component = gr.ImageSlider(
label="Comparison",
type="pil",
format='png',
elem_id="compare-image"
)
input_image.upload(
fn=upload_and_reset,
inputs=[input_image, interactive_state],
outputs=[
image_state,
image_info,
input_image,
interactive_state,
click_state,
mask_dropdown,
]
)
# click select image to get mask using sam
input_image.select(
fn=sam_refine,
inputs=[image_state, point_prompt, click_state],
outputs=[input_image, image_state, click_state]
)
# add different mask
add_mask_button.click(
fn=add_multi_mask,
inputs=[image_state, interactive_state, mask_dropdown],
outputs=[interactive_state, mask_dropdown, input_image, click_state]
)
remove_mask_button.click(
fn=remove_multi_mask,
inputs=[interactive_state, click_state, image_state],
outputs=[interactive_state, mask_dropdown, input_image, click_state]
)
# points clear
clear_button_click.click(
fn = clear_click,
inputs = [image_state, click_state,],
outputs = [input_image, click_state],
)
submit_button_component.click(
fn=process,
inputs=[
image_state,
interactive_state,
mask_dropdown,
guidance_scale,
seed,
num_inference_steps,
strength
],
outputs=[
output_image_component, output_compare_image_component
]
)
with gr.Accordion("📕 Video Tutorial (click to expand)", open=False, elem_classes="custom-bg"):
with gr.Row():
gr.Video(value="/home/user/app/hugging_face/assets/tutorial.mp4", elem_classes="video")
gr.Markdown("---")
gr.Markdown("## Examples")
example_images = [
os.path.join(os.path.dirname(__file__), "examples", f"test{i}.png")
for i in range(10)
]
examples_data = [
[example_images[i], None] for i in range(len(example_images))
]
examples = gr.Examples(
examples=examples_data,
inputs=[input_image, interactive_state],
outputs=[image_state, image_info, input_image,
interactive_state, click_state, mask_dropdown],
fn=upload_and_reset,
run_on_click=True,
cache_examples=False,
label="Click below to load example images"
)
gr.Markdown(article)
def pre_update_input_image():
return gr.update(value=None)
demo.load(
fn=pre_update_input_image,
inputs=[],
outputs=[input_image]
)
demo.launch(debug=True, show_error=True)