ObjectClear / utils.py
jixin0101's picture
feat: enable pipeline to output fused result
6fa3be1
import numpy as np
import cv2
from scipy.ndimage import convolve, zoom
from PIL import Image
def pad_to_multiple(image: np.ndarray, multiple: int = 8):
h, w = image.shape[:2]
pad_h = (multiple - h % multiple) % multiple
pad_w = (multiple - w % multiple) % multiple
if image.ndim == 3:
padded = np.pad(image, ((0, pad_h), (0, pad_w), (0,0)), mode='reflect')
else:
padded = np.pad(image, ((0, pad_h), (0, pad_w)), mode='reflect')
return padded, h, w
def crop_to_original(image: np.ndarray, h: int, w: int):
return image[:h, :w]
def wavelet_blur_np(image: np.ndarray, radius: int):
kernel = np.array([
[0.0625, 0.125, 0.0625],
[0.125, 0.25, 0.125],
[0.0625, 0.125, 0.0625]
], dtype=np.float32)
blurred = np.empty_like(image)
for c in range(image.shape[0]):
blurred_c = convolve(image[c], kernel, mode='nearest')
if radius > 1:
blurred_c = zoom(zoom(blurred_c, 1 / radius, order=1), radius, order=1)
blurred[c] = blurred_c
return blurred
def wavelet_decomposition_np(image: np.ndarray, levels=5):
high_freq = np.zeros_like(image)
for i in range(levels):
radius = 2 ** i
low_freq = wavelet_blur_np(image, radius)
high_freq += (image - low_freq)
image = low_freq
return high_freq, low_freq
def wavelet_reconstruction_np(content_feat: np.ndarray, style_feat: np.ndarray):
content_high, _ = wavelet_decomposition_np(content_feat)
_, style_low = wavelet_decomposition_np(style_feat)
return content_high + style_low
def wavelet_color_fix_np(fused: np.ndarray, mask: np.ndarray) -> np.ndarray:
fused_np = fused.astype(np.float32) / 255.0
mask_np = mask.astype(np.float32) / 255.0
fused_np = fused_np.transpose(2, 0, 1)
mask_np = mask_np.transpose(2, 0, 1)
result_np = wavelet_reconstruction_np(fused_np, mask_np)
result_np = result_np.transpose(1, 2, 0)
result_np = np.clip(result_np * 255.0, 0, 255).astype(np.uint8)
return result_np
def attention_guided_fusion(ori: np.ndarray, removed: np.ndarray, attn_map: np.ndarray, multiple: int = 8):
H, W = ori.shape[:2]
attn_map = attn_map.astype(np.float32)
_, attn_map = cv2.threshold(attn_map, 128, 255, cv2.THRESH_BINARY)
am = attn_map.astype(np.float32)
am = am/255.0
am_up = cv2.resize(am, (W, H), interpolation=cv2.INTER_NEAREST)
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (21,21))
am_d = cv2.dilate(am_up, kernel, iterations=1)
am_d = cv2.GaussianBlur(am_d.astype(np.float32), (9,9), sigmaX=2)
am_merged = np.maximum(am_up, am_d)
am_merged = np.clip(am_merged, 0, 1)
attn_up_3c = np.stack([am_merged]*3, axis=-1)
attn_up_ori_3c = np.stack([am_up]*3, axis=-1)
ori_out = ori * (1 - attn_up_ori_3c)
rem_out = removed * (1 - attn_up_ori_3c)
ori_pad, h0, w0 = pad_to_multiple(ori_out, multiple)
rem_pad, _, _ = pad_to_multiple(rem_out, multiple)
wave_rgb = wavelet_color_fix_np(ori_pad, rem_pad)
wave = crop_to_original(wave_rgb, h0, w0)
# fusion
fused = (wave * (1 - attn_up_3c) + removed * attn_up_3c).astype(np.uint8)
return fused
def resize_by_short_side(image, target_short=512, resample=Image.BICUBIC):
w, h = image.size
if w < h:
new_w = target_short
new_h = int(h * target_short / w)
new_h = (new_h + 15) // 16 * 16
else:
new_h = target_short
new_w = int(w * target_short / h)
new_w = (new_w + 15) // 16 * 16
return image.resize((new_w, new_h), resample=resample)