Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,137 +4,94 @@ import requests
|
|
| 4 |
import pandas as pd
|
| 5 |
from huggingface_hub import login
|
| 6 |
from dotenv import load_dotenv
|
| 7 |
-
import
|
| 8 |
|
| 9 |
-
# Cargar
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
# Constantes
|
| 13 |
API_BASE_URL = "https://my-custom-api.hf.space"
|
| 14 |
|
| 15 |
-
def
|
| 16 |
-
"""
|
| 17 |
-
Obtiene preguntas, ejecuta el agente y envía respuestas.
|
| 18 |
-
"""
|
| 19 |
-
# Obtener el ID de espacio
|
| 20 |
space_id = os.getenv("MY_SPACE_ID")
|
| 21 |
|
| 22 |
if profile:
|
| 23 |
-
username =
|
| 24 |
-
print(f"Usuario
|
| 25 |
else:
|
| 26 |
-
|
| 27 |
-
return "Inicia sesión en Hugging Face.", None
|
| 28 |
|
| 29 |
-
|
| 30 |
-
attachments_url = f"{API_BASE_URL}/files/"
|
| 31 |
-
submit_url = f"{API_BASE_URL}/submit"
|
| 32 |
-
|
| 33 |
-
try:
|
| 34 |
-
print("Iniciando Agente...")
|
| 35 |
-
# Aquí puedes instanciar tu agente como se define en agent.py
|
| 36 |
-
# agente = MiAgente()
|
| 37 |
-
except Exception as e:
|
| 38 |
-
print(f"Error al inicializar agente: {e}")
|
| 39 |
-
return f"Error al inicializar el agente: {e}", None
|
| 40 |
-
|
| 41 |
-
# Obtener las preguntas
|
| 42 |
-
print(f"Obteniendo preguntas de: {questions_url}")
|
| 43 |
try:
|
| 44 |
-
response = requests.get(
|
| 45 |
response.raise_for_status()
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
print("La lista de preguntas está vacía.")
|
| 49 |
-
return "No se encontraron preguntas.", None
|
| 50 |
-
print(f"Se obtuvieron {len(questions)} preguntas.")
|
| 51 |
-
|
| 52 |
-
for q in questions:
|
| 53 |
-
file_name = q.get("file_name", "")
|
| 54 |
-
task_id = q.get("task_id")
|
| 55 |
-
if file_name and task_id:
|
| 56 |
-
try:
|
| 57 |
-
att_response = requests.get(f"{attachments_url}{task_id}", timeout=15)
|
| 58 |
-
att_response.raise_for_status()
|
| 59 |
-
q["attachment_b64"] = att_response.text
|
| 60 |
-
except Exception as e:
|
| 61 |
-
print(f"Error al obtener archivo adjunto para la tarea {task_id}: {e}")
|
| 62 |
-
q["attachment_b64"] = None
|
| 63 |
-
except requests.exceptions.RequestException as e:
|
| 64 |
-
print(f"Error al obtener preguntas: {e}")
|
| 65 |
return f"Error al obtener preguntas: {e}", None
|
| 66 |
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
task_id = item.get("task_id")
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
if
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
print(f"Saltando tarea con información incompleta: {item}")
|
| 80 |
-
continue
|
| 81 |
try:
|
| 82 |
-
|
| 83 |
-
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
| 84 |
-
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
| 85 |
except Exception as e:
|
| 86 |
-
|
| 87 |
-
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"ERROR: {e}"})
|
| 88 |
|
| 89 |
-
|
| 90 |
-
|
| 91 |
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
try:
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
return final_status, results_df
|
| 104 |
-
except requests.exceptions.RequestException as e:
|
| 105 |
-
error_message = f"Error al enviar: {e}"
|
| 106 |
-
print(error_message)
|
| 107 |
-
results_df = pd.DataFrame(results_log)
|
| 108 |
-
return error_message, results_df
|
| 109 |
-
|
| 110 |
|
| 111 |
# Interfaz Gradio
|
| 112 |
-
with gr.Blocks() as
|
| 113 |
-
gr.Markdown("# Evaluador de Agente
|
| 114 |
-
gr.Markdown(""
|
| 115 |
-
**Instrucciones:**
|
| 116 |
-
|
| 117 |
-
1. Modifica el código para ajustar el agente a tus necesidades.
|
| 118 |
-
2. Inicia sesión en Hugging Face.
|
| 119 |
-
3. Haz clic en 'Ejecutar Evaluación y Enviar Respuestas' para procesar las preguntas.
|
| 120 |
-
|
| 121 |
-
---
|
| 122 |
-
**Avisos:**
|
| 123 |
-
Este espacio está diseñado para ser subóptimo con el fin de incentivar la personalización del código.
|
| 124 |
-
""")
|
| 125 |
|
| 126 |
gr.LoginButton()
|
|
|
|
| 127 |
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
status_output = gr.Textbox(label="Estado de Ejecución / Resultado del Envío", lines=5, interactive=False)
|
| 131 |
-
results_table = gr.DataFrame(label="Preguntas y Respuestas del Agente", wrap=True)
|
| 132 |
|
| 133 |
-
|
| 134 |
-
fn=execute_agent_operations,
|
| 135 |
-
outputs=[status_output, results_table]
|
| 136 |
-
)
|
| 137 |
|
| 138 |
if __name__ == "__main__":
|
| 139 |
-
|
| 140 |
-
demo.launch(debug=True, share=False)
|
|
|
|
| 4 |
import pandas as pd
|
| 5 |
from huggingface_hub import login
|
| 6 |
from dotenv import load_dotenv
|
| 7 |
+
from agent import ejecutar_agente
|
| 8 |
|
| 9 |
+
# Cargar token desde secreto y hacer login
|
| 10 |
+
hf_token = os.getenv("HF_TOKEN")
|
| 11 |
+
if hf_token:
|
| 12 |
+
login(token=hf_token)
|
| 13 |
+
else:
|
| 14 |
+
raise ValueError("No se encontró el token de Hugging Face. Verifica el secreto HF_TOKEN.")
|
| 15 |
|
| 16 |
# Constantes
|
| 17 |
API_BASE_URL = "https://my-custom-api.hf.space"
|
| 18 |
|
| 19 |
+
def ejecutar_y_enviar_respuestas(profile: gr.OAuthProfile | None):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
space_id = os.getenv("MY_SPACE_ID")
|
| 21 |
|
| 22 |
if profile:
|
| 23 |
+
username = profile.username
|
| 24 |
+
print(f"Usuario: {username}")
|
| 25 |
else:
|
| 26 |
+
return "Debes iniciar sesión en Hugging Face.", None
|
|
|
|
| 27 |
|
| 28 |
+
# Obtener preguntas
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
try:
|
| 30 |
+
response = requests.get(f"{API_BASE_URL}/questions", timeout=10)
|
| 31 |
response.raise_for_status()
|
| 32 |
+
preguntas = response.json()
|
| 33 |
+
except Exception as e:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
return f"Error al obtener preguntas: {e}", None
|
| 35 |
|
| 36 |
+
if not preguntas:
|
| 37 |
+
return "No hay preguntas disponibles.", None
|
| 38 |
+
|
| 39 |
+
for p in preguntas:
|
| 40 |
+
task_id = p.get("task_id")
|
| 41 |
+
if task_id:
|
| 42 |
+
try:
|
| 43 |
+
archivo = requests.get(f"{API_BASE_URL}/files/{task_id}", timeout=10)
|
| 44 |
+
archivo.raise_for_status()
|
| 45 |
+
p["attachment_b64"] = archivo.text
|
| 46 |
+
except:
|
| 47 |
+
p["attachment_b64"] = None
|
| 48 |
+
|
| 49 |
+
# Ejecutar agente sobre preguntas
|
| 50 |
+
resultados = []
|
| 51 |
+
respuestas = []
|
| 52 |
+
|
| 53 |
+
for item in preguntas:
|
| 54 |
task_id = item.get("task_id")
|
| 55 |
+
pregunta = item.get("question", "")
|
| 56 |
+
adjunto = item.get("attachment_b64", "")
|
| 57 |
+
if adjunto:
|
| 58 |
+
pregunta += f"\n\n[ATTACHMENT:]\n{adjunto}"
|
| 59 |
+
|
|
|
|
|
|
|
| 60 |
try:
|
| 61 |
+
respuesta = ejecutar_agente(pregunta)
|
|
|
|
|
|
|
| 62 |
except Exception as e:
|
| 63 |
+
respuesta = f"ERROR: {e}"
|
|
|
|
| 64 |
|
| 65 |
+
respuestas.append({"task_id": task_id, "submitted_answer": respuesta})
|
| 66 |
+
resultados.append({"Task ID": task_id, "Question": pregunta, "Submitted Answer": respuesta})
|
| 67 |
|
| 68 |
+
# Enviar respuestas
|
| 69 |
+
payload = {
|
| 70 |
+
"username": username,
|
| 71 |
+
"agent_code": f"https://huggingface.co/spaces/{space_id}",
|
| 72 |
+
"answers": respuestas,
|
| 73 |
+
}
|
| 74 |
|
| 75 |
try:
|
| 76 |
+
envio = requests.post(f"{API_BASE_URL}/submit", json=payload, timeout=60)
|
| 77 |
+
envio.raise_for_status()
|
| 78 |
+
resultado_final = envio.json()
|
| 79 |
+
return f"¡Envío exitoso! Score: {resultado_final.get('score', 'N/A')}", pd.DataFrame(resultados)
|
| 80 |
+
except Exception as e:
|
| 81 |
+
return f"Error al enviar: {e}", pd.DataFrame(resultados)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
# Interfaz Gradio
|
| 84 |
+
with gr.Blocks() as interfaz:
|
| 85 |
+
gr.Markdown("# Evaluador de Agente")
|
| 86 |
+
gr.Markdown("Inicia sesión, ejecuta el agente y envía tus respuestas.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
gr.LoginButton()
|
| 89 |
+
btn = gr.Button("Ejecutar Evaluación y Enviar Respuestas")
|
| 90 |
|
| 91 |
+
salida_estado = gr.Textbox(label="Estado", lines=4)
|
| 92 |
+
salida_tabla = gr.DataFrame(label="Resultados")
|
|
|
|
|
|
|
| 93 |
|
| 94 |
+
btn.click(fn=ejecutar_y_enviar_respuestas, outputs=[salida_estado, salida_tabla])
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
if __name__ == "__main__":
|
| 97 |
+
interfaz.launch()
|
|
|