File size: 1,126 Bytes
789250e
4eb6999
789250e
 
 
4eb6999
 
 
789250e
4eb6999
789250e
4eb6999
 
789250e
4eb6999
789250e
 
 
4eb6999
789250e
4eb6999
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import streamlit as st
from transformers import T5Tokenizer, T5ForConditionalGeneration

@st.cache_resource
def load_model():
    tokenizer = T5Tokenizer.from_pretrained("Salesforce/codet5-base")
    model = T5ForConditionalGeneration.from_pretrained("Salesforce/codet5-base")
    return tokenizer, model

tokenizer, model = load_model()

st.title("🧠 Code Explainer (CodeT5)")
st.markdown("Paste code and get an explanation using the CodeT5 model from Hugging Face.")

code_input = st.text_area("Paste your code here:", height=200)

if st.button("Explain Code"):
    if code_input.strip() == "":
        st.warning("Please paste some code first.")
    else:
        with st.spinner("Generating explanation..."):
            input_text = f"summarize: {code_input.strip()}"
            input_ids = tokenizer.encode(input_text, return_tensors="pt", truncation=True, max_length=512)
            outputs = model.generate(input_ids, max_length=150, num_beams=4, early_stopping=True)
            summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
            st.success("Explanation:")
            st.write(summary)