Spaces:
Running
Running
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
# β Use AutoTokenizer and AutoModel to avoid tokenizer mismatch | |
tokenizer = AutoTokenizer.from_pretrained("Salesforce/codet5-base") | |
model = AutoModelForSeq2SeqLM.from_pretrained("Salesforce/codet5-base") | |
# Function to explain code | |
def explain_code(code_snippet): | |
if not code_snippet.strip(): | |
return "β Please enter some code." | |
input_text = f"summarize: {code_snippet.strip()}" | |
input_ids = tokenizer.encode(input_text, return_tensors="pt", truncation=True, max_length=512) | |
outputs = model.generate(input_ids, max_length=150, num_beams=4, early_stopping=True) | |
explanation = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return explanation | |
# Gradio Interface | |
demo = gr.Interface( | |
fn=explain_code, | |
inputs=gr.Textbox(lines=15, label="Paste your code here"), | |
outputs=gr.Textbox(label="Explanation"), | |
title="π§ Code Explainer using CodeT5", | |
description="Paste your code and get a plain English explanation using Salesforce's CodeT5.", | |
theme="default" | |
) | |
demo.launch() | |