Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,071 Bytes
f499d3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 |
import os
import sys
import weakref
import torch
torch.multiprocessing.set_start_method('spawn')
import torch.nn as nn
import torch.utils.data
from functools import partial
if sys.version_info >= (3, 10):
from collections.abc import Iterator
else:
from collections import Iterator
from tensorboardX import SummaryWriter
from .defaults import create_ddp_model, worker_init_fn
from .hooks import HookBase, build_hooks
import pointcept.utils.comm as comm
from pointcept.datasets import build_dataset, point_collate_fn, collate_fn
from pointcept.models import build_model
from pointcept.utils.logger import get_root_logger
from pointcept.utils.optimizer import build_optimizer
from pointcept.utils.scheduler import build_scheduler
from pointcept.utils.events import EventStorage
from pointcept.utils.registry import Registry
from sklearn.preprocessing import QuantileTransformer
from pointcept.utils.timer import Timer
TRAINERS = Registry("trainers")
from cuml.cluster.hdbscan import HDBSCAN
# from sklearn.cluster import HDBSCAN
import open3d as o3d
import matplotlib.colors as mcolors
import numpy as np
from collections import OrderedDict
import trimesh
import pointops
class TrainerBase:
def __init__(self) -> None:
self.hooks = []
self.epoch = 0
self.start_epoch = 0
self.max_epoch = 0
self.max_iter = 0
self.comm_info = dict()
self.data_iterator: Iterator = enumerate([])
self.storage: EventStorage
self.writer: SummaryWriter
self._iter_timer = Timer()
def register_hooks(self, hooks) -> None:
hooks = build_hooks(hooks)
for h in hooks:
assert isinstance(h, HookBase)
# To avoid circular reference, hooks and trainer cannot own each other.
# This normally does not matter, but will cause memory leak if the
# involved objects contain __del__:
# See http://engineering.hearsaysocial.com/2013/06/16/circular-references-in-python/
h.trainer = weakref.proxy(self)
self.hooks.extend(hooks)
def train(self):
with EventStorage() as self.storage:
# => before train
self.before_train()
for self.epoch in range(self.start_epoch, self.max_epoch):
# => before epoch
self.before_epoch()
# => run_epoch
for (
self.comm_info["iter"],
self.comm_info["input_dict"],
) in self.data_iterator:
# => before_step
self.before_step()
# => run_step
self.run_step()
# => after_step
self.after_step()
# => after epoch
self.after_epoch()
# => after train
self.after_train()
def before_train(self):
for h in self.hooks:
h.before_train()
def before_epoch(self):
for h in self.hooks:
h.before_epoch()
def before_step(self):
for h in self.hooks:
h.before_step()
def run_step(self):
raise NotImplementedError
def after_step(self):
for h in self.hooks:
h.after_step()
def after_epoch(self):
for h in self.hooks:
h.after_epoch()
self.storage.reset_histories()
def after_train(self):
# Sync GPU before running train hooks
comm.synchronize()
for h in self.hooks:
h.after_train()
if comm.is_main_process():
self.writer.close()
@TRAINERS.register_module("DefaultTrainer")
class Trainer(TrainerBase):
def __init__(self, cfg):
super(Trainer, self).__init__()
self.epoch = 0
self.start_epoch = 0
self.max_epoch = cfg.eval_epoch
self.best_metric_value = -torch.inf
self.logger = get_root_logger(
log_file=os.path.join(cfg.save_path, "train.log"),
# file_mode="a" if cfg.resume else "w",
file_mode="a",
)
self.logger.info("=> Loading config ...")
self.cfg = cfg
self.logger.info(f"Save path: {cfg.save_path}")
self.logger.info(f"Config:\n{cfg.pretty_text}")
self.logger.info("=> Building model ...")
self.model = self.build_model()
self.logger.info("=> Building val dataset & dataloader ...")
self.train_loader = self.build_train_loader()
self.logger.info("=> Building hooks ...")
self.register_hooks(self.cfg.hooks)
# !!!
self.val_scales_list = self.cfg.val_scales_list
self.mesh_voting = self.cfg.mesh_voting
self.backbone_weight_path = self.cfg.backbone_weight_path
def eval(self):
# val_data = build_dataset(self.cfg.data.val)
self.logger.info("=> Loading checkpoint & weight ...")
if self.backbone_weight_path != None:
self.logger.info("=> Loading checkpoint of pretrained backbone")
if os.path.isfile(self.backbone_weight_path):
checkpoint = torch.load(
self.backbone_weight_path,
map_location=lambda storage, loc: storage.cuda(),
)
weight = OrderedDict()
for key, value in checkpoint["state_dict"].items():
if not key.startswith("module."):
if comm.get_world_size() > 1:
key = "module." + key # xxx.xxx -> module.xxx.xxx
# Now all keys contain "module." no matter DDP or not.
# if self.keywords in key:
# key = key.replace(self.keywords, self.replacement)
if comm.get_world_size() == 1:
key = key[7:] # module.xxx.xxx -> xxx.xxx
# if key.startswith("backbone."):
# key = key[9:] # backbone.xxx.xxx -> xxx.xxx
key = "backbone." + key # xxx.xxx -> backbone.xxx.xxx
weight[key] = value
load_state_info = self.model.load_state_dict(weight, strict=False)
self.logger.info(f"Missing keys: {load_state_info[0]}")
else:
self.logger.info(f"No weight found at: {self.backbone_weight_path}")
if self.cfg.weight and os.path.isfile(self.cfg.weight):
checkpoint = torch.load(
self.cfg.weight,
map_location=lambda storage, loc: storage.cuda(),
)
load_state_info = self.model.load_state_dict(checkpoint["state_dict"], strict=False)
self.logger.info(f"Missing keys: {load_state_info[0]}")
scale_statistics = checkpoint["state_dict"]["scale_statistics"]
self.model.quantile_transformer = self._get_quantile_func(scale_statistics)
else:
self.logger.info(f"No weight found at: {self.cfg.weight}")
self.cfg.weight = "last"
self.model.eval()
save_root = os.path.join(self.cfg.save_path, "vis_pcd", os.path.splitext(os.path.basename(self.cfg.weight))[0])
os.makedirs(save_root, exist_ok=True)
group_save_root = os.path.join(self.cfg.save_path, "results", os.path.splitext(os.path.basename(self.cfg.weight))[0])
os.makedirs(group_save_root, exist_ok=True)
hex_colors = list(mcolors.CSS4_COLORS.values())
rgb_colors = np.array([mcolors.to_rgb(color) for color in hex_colors if color not in ['#000000', '#FFFFFF']])
def relative_luminance(color):
return 0.2126 * color[0] + 0.7152 * color[1] + 0.0722 * color[2]
rgb_colors = [color for color in rgb_colors if (relative_luminance(color) > 0.4 and relative_luminance(color) < 0.8)]
np.random.shuffle(rgb_colors)
input_dict = self.train_loader.val_data()
pcd_inverse = self.train_loader.pcd_inverse
if self.mesh_voting:
mesh = trimesh.load(self.train_loader.mesh_path)
if isinstance(mesh, trimesh.Scene):
mesh = mesh.dump(concatenate=True)
mesh.visual = trimesh.visual.ColorVisuals(mesh=mesh)
for scale in self.val_scales_list:
input_dict["scale"] = scale
instance_feat = self.model(input_dict).cpu().detach().numpy()
clusterer = HDBSCAN(
cluster_selection_epsilon=0.1,
min_samples=30,
min_cluster_size=30,
allow_single_cluster=False,
).fit(instance_feat)
labels = clusterer.labels_
invalid_label_mask = labels == -1
if invalid_label_mask.sum() > 0:
if invalid_label_mask.sum() == len(invalid_label_mask):
labels = np.zeros_like(labels)
else:
coord = input_dict["obj"]["coord"].cuda().contiguous().float()
valid_coord = coord[~invalid_label_mask]
valid_offset = torch.tensor(valid_coord.shape[0]).cuda()
invalid_coord = coord[invalid_label_mask]
invalid_offset = torch.tensor(invalid_coord.shape[0]).cuda()
indices, distances = pointops.knn_query(1, valid_coord, valid_offset, invalid_coord, invalid_offset)
indices = indices[:, 0].cpu().numpy()
labels[invalid_label_mask] = labels[~invalid_label_mask][indices]
# np.save(os.path.join(group_save_root, f"{str(scale)}.npy"), labels)
save_path = os.path.join(save_root, f"{str(scale)}.ply")
coord = input_dict["obj"]["coord"].cpu().numpy()
random_color = []
for i in range(max(labels) + 1):
random_color.append(rgb_colors[i % len(rgb_colors)])
random_color.append(np.array([0, 0, 0]))
color = [random_color[i] for i in labels]
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(coord)
pcd.colors = o3d.utility.Vector3dVector(color)
o3d.io.write_point_cloud(save_path, pcd)
labels = labels[pcd_inverse]
# print(len(clusterer.labels_))
self.logger.info(f"scale_{scale} has {max(labels)+1} groups")
if self.mesh_voting:
face_index = self.train_loader.face_index
face_index = face_index[pcd_inverse]
# Compute votes for each face using NumPy's bincount function
# labels = clusterer.labels_
num_faces = len(mesh.faces)
num_labels = max(labels) + 1
votes = np.zeros((num_faces, num_labels), dtype=np.int32)
np.add.at(votes, (face_index, labels), 1)
# Find the label with most votes for each face using NumPy's argmax function
max_votes_labels = np.argmax(votes, axis=1)
# Set the label to -1 for faces that have no corresponding points
max_votes_labels[np.all(votes == 0, axis=1)] = -1
valid_mask = max_votes_labels != -1
face_centroids = mesh.triangles_center
coord = torch.tensor(face_centroids).cuda().contiguous().float()
valid_coord = coord[valid_mask]
valid_offset = torch.tensor(valid_coord.shape[0]).cuda()
invalid_coord = coord[~valid_mask]
invalid_offset = torch.tensor(invalid_coord.shape[0]).cuda()
indices, distances = pointops.knn_query(1, valid_coord, valid_offset, invalid_coord, invalid_offset)
# # the first column is the point itself
# indices = indices[:, 1].cpu().numpy()
indices = indices[:, 0].cpu().numpy()
mesh_group = max_votes_labels.copy()
mesh_group[~valid_mask] = mesh_group[valid_mask][indices]
np.save(os.path.join(group_save_root, f"mesh_{str(scale)}.npy"), mesh_group)
# Assign color to each face based on the label with most votes
for face, label in enumerate(mesh_group):
color = (random_color[label] * 255).astype(np.uint8)
color_with_alpha = np.append(color, 255) # Add alpha value
mesh.visual.face_colors[face] = color_with_alpha
# Save the new mesh
mesh_save_path = os.path.join(save_root, f"mesh_{str(scale)}.ply")
mesh.export(mesh_save_path)
def _get_quantile_func(self, scales: torch.Tensor, distribution="normal"):
"""
Use 3D scale statistics to normalize scales -- use quantile transformer.
"""
scales = scales.flatten()
max_grouping_scale = 2
scales = scales[(scales > 0) & (scales < max_grouping_scale)]
scales = scales.detach().cpu().numpy()
# Calculate quantile transformer
quantile_transformer = QuantileTransformer(output_distribution=distribution)
quantile_transformer = quantile_transformer.fit(scales.reshape(-1, 1))
def quantile_transformer_func(scales):
# This function acts as a wrapper for QuantileTransformer.
# QuantileTransformer expects a numpy array, while we have a torch tensor.
return torch.Tensor(
quantile_transformer.transform(scales.cpu().numpy())
).to(scales.device)
return quantile_transformer_func
def run_step(self):
input_dict = self.comm_info["input_dict"]
for key in input_dict.keys():
if isinstance(input_dict[key], torch.Tensor):
input_dict[key] = input_dict[key].cuda(non_blocking=True)
with torch.cuda.amp.autocast(enabled=self.cfg.enable_amp):
output_dict = self.model(input_dict)
loss = output_dict["loss"]
self.optimizer.zero_grad()
if self.cfg.enable_amp:
self.scaler.scale(loss).backward()
self.scaler.step(self.optimizer)
# When enable amp, optimizer.step call are skipped if the loss scaling factor is too large.
# Fix torch warning scheduler step before optimizer step.
scaler = self.scaler.get_scale()
self.scaler.update()
if scaler <= self.scaler.get_scale():
self.scheduler.step()
else:
loss.backward()
self.optimizer.step()
self.scheduler.step()
if self.cfg.empty_cache:
torch.cuda.empty_cache()
self.comm_info["model_output_dict"] = output_dict
def build_model(self):
model = build_model(self.cfg.model)
if self.cfg.sync_bn:
model = nn.SyncBatchNorm.convert_sync_batchnorm(model)
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
# logger.info(f"Model: \n{self.model}")
self.logger.info(f"Num params: {n_parameters}")
model = create_ddp_model(
model.cuda(),
broadcast_buffers=False,
find_unused_parameters=self.cfg.find_unused_parameters,
)
return model
def build_writer(self):
writer = SummaryWriter(self.cfg.save_path) if comm.is_main_process() else None
self.logger.info(f"Tensorboard writer logging dir: {self.cfg.save_path}")
return writer
def build_train_loader(self):
self.cfg.data.train.split = "val"
self.cfg.data.train.oid = self.cfg.oid
self.cfg.data.train.label = self.cfg.label
train_data = build_dataset(self.cfg.data.train)
return train_data
def build_val_loader(self):
val_loader = None
if self.cfg.evaluate:
val_data = build_dataset(self.cfg.data.val)
if comm.get_world_size() > 1:
val_sampler = torch.utils.data.distributed.DistributedSampler(val_data)
else:
val_sampler = None
val_loader = torch.utils.data.DataLoader(
val_data,
batch_size=self.cfg.batch_size_val_per_gpu,
shuffle=False,
num_workers=self.cfg.num_worker_per_gpu,
pin_memory=True,
sampler=val_sampler,
collate_fn=collate_fn,
)
return val_loader
def build_optimizer(self):
return build_optimizer(self.cfg.optimizer, self.model, self.cfg.param_dicts)
def build_scheduler(self):
assert hasattr(self, "optimizer")
assert hasattr(self, "train_loader")
# self.cfg.scheduler.total_steps = len(self.train_loader) * self.cfg.eval_epoch
self.cfg.scheduler.total_steps = self.max_epoch
return build_scheduler(self.cfg.scheduler, self.optimizer)
def build_scaler(self):
scaler = torch.cuda.amp.GradScaler() if self.cfg.enable_amp else None
return scaler
|