Spaces:
Running
on
Zero
Running
on
Zero
File size: 23,148 Bytes
f499d3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 |
from functools import partial
from addict import Dict
import math
import torch
import torch.nn as nn
import spconv.pytorch as spconv
import torch_scatter
from timm.models.layers import DropPath
from typing import Union
from einops import rearrange
try:
import flash_attn
except ImportError:
flash_attn = None
from .utils.misc import offset2bincount
from .utils.structure import Point
from .modules import PointModule, PointSequential
class RPE(torch.nn.Module):
def __init__(self, patch_size, num_heads):
super().__init__()
self.patch_size = patch_size
self.num_heads = num_heads
self.pos_bnd = int((4 * patch_size) ** (1 / 3) * 2)
self.rpe_num = 2 * self.pos_bnd + 1
self.rpe_table = torch.nn.Parameter(torch.zeros(3 * self.rpe_num, num_heads))
torch.nn.init.trunc_normal_(self.rpe_table, std=0.02)
def forward(self, coord):
idx = (
coord.clamp(-self.pos_bnd, self.pos_bnd) # clamp into bnd
+ self.pos_bnd # relative position to positive index
+ torch.arange(3, device=coord.device) * self.rpe_num # x, y, z stride
)
out = self.rpe_table.index_select(0, idx.reshape(-1))
out = out.view(idx.shape + (-1,)).sum(3)
out = out.permute(0, 3, 1, 2) # (N, K, K, H) -> (N, H, K, K)
return out
class QueryKeyNorm(nn.Module):
def __init__(self, channels, num_heads):
super(QueryKeyNorm, self).__init__()
self.num_heads = num_heads
self.norm = nn.LayerNorm(channels // num_heads, elementwise_affine=False)
def forward(self, qkv):
H = self.num_heads
#qkv = qkv.reshape(-1, 3, H, qkv.shape[1] // H).permute(1, 0, 2, 3)
qkv = rearrange(qkv, 'N (S H Ch) -> S N H Ch', H=H, S=3)
q, k, v = qkv.unbind(dim=0)
# q, k, v: [N, H, C // H]
q_norm = self.norm(q)
k_norm = self.norm(k)
# qkv_norm: [3, N, H, C // H]
qkv_norm = torch.stack([q_norm, k_norm, v])
qkv_norm = rearrange(qkv_norm, 'S N H Ch -> N (S H Ch)')
return qkv_norm
class SerializedAttention(PointModule):
def __init__(
self,
channels,
num_heads,
patch_size,
qkv_bias=True,
qk_scale=None,
attn_drop=0.0,
proj_drop=0.0,
order_index=0,
enable_rpe=False,
enable_flash=True,
upcast_attention=True,
upcast_softmax=True,
enable_qknorm=False,
):
super().__init__()
assert channels % num_heads == 0, f"channels {channels} must be divisible by num_heads {num_heads}"
self.channels = channels
self.num_heads = num_heads
self.scale = qk_scale or (channels // num_heads) ** -0.5
self.order_index = order_index
self.upcast_attention = upcast_attention
self.upcast_softmax = upcast_softmax
self.enable_rpe = enable_rpe
self.enable_flash = enable_flash
self.enable_qknorm = enable_qknorm
if enable_qknorm:
self.qknorm = QueryKeyNorm(channels, num_heads)
else:
print("WARNING: enable_qknorm is False in PTv3Object and training may be fragile")
if enable_flash:
assert (
enable_rpe is False
), "Set enable_rpe to False when enable Flash Attention"
assert (
upcast_attention is False
), "Set upcast_attention to False when enable Flash Attention"
assert (
upcast_softmax is False
), "Set upcast_softmax to False when enable Flash Attention"
assert flash_attn is not None, "Make sure flash_attn is installed."
self.patch_size = patch_size
self.attn_drop = attn_drop
else:
# when disable flash attention, we still don't want to use mask
# consequently, patch size will auto set to the
# min number of patch_size_max and number of points
self.patch_size_max = patch_size
self.patch_size = 0
self.attn_drop = torch.nn.Dropout(attn_drop)
self.qkv = torch.nn.Linear(channels, channels * 3, bias=qkv_bias)
self.proj = torch.nn.Linear(channels, channels)
self.proj_drop = torch.nn.Dropout(proj_drop)
self.softmax = torch.nn.Softmax(dim=-1)
self.rpe = RPE(patch_size, num_heads) if self.enable_rpe else None
@torch.no_grad()
def get_rel_pos(self, point, order):
K = self.patch_size
rel_pos_key = f"rel_pos_{self.order_index}"
if rel_pos_key not in point.keys():
grid_coord = point.grid_coord[order]
grid_coord = grid_coord.reshape(-1, K, 3)
point[rel_pos_key] = grid_coord.unsqueeze(2) - grid_coord.unsqueeze(1)
return point[rel_pos_key]
@torch.no_grad()
def get_padding_and_inverse(self, point):
pad_key = "pad"
unpad_key = "unpad"
cu_seqlens_key = "cu_seqlens_key"
if (
pad_key not in point.keys()
or unpad_key not in point.keys()
or cu_seqlens_key not in point.keys()
):
offset = point.offset
bincount = offset2bincount(offset)
bincount_pad = (
torch.div(
bincount + self.patch_size - 1,
self.patch_size,
rounding_mode="trunc",
)
* self.patch_size
)
# only pad point when num of points larger than patch_size
mask_pad = bincount > self.patch_size
bincount_pad = ~mask_pad * bincount + mask_pad * bincount_pad
_offset = nn.functional.pad(offset, (1, 0))
_offset_pad = nn.functional.pad(torch.cumsum(bincount_pad, dim=0), (1, 0))
pad = torch.arange(_offset_pad[-1], device=offset.device)
unpad = torch.arange(_offset[-1], device=offset.device)
cu_seqlens = []
for i in range(len(offset)):
unpad[_offset[i] : _offset[i + 1]] += _offset_pad[i] - _offset[i]
if bincount[i] != bincount_pad[i]:
pad[
_offset_pad[i + 1]
- self.patch_size
+ (bincount[i] % self.patch_size) : _offset_pad[i + 1]
] = pad[
_offset_pad[i + 1]
- 2 * self.patch_size
+ (bincount[i] % self.patch_size) : _offset_pad[i + 1]
- self.patch_size
]
pad[_offset_pad[i] : _offset_pad[i + 1]] -= _offset_pad[i] - _offset[i]
cu_seqlens.append(
torch.arange(
_offset_pad[i],
_offset_pad[i + 1],
step=self.patch_size,
dtype=torch.int32,
device=offset.device,
)
)
point[pad_key] = pad
point[unpad_key] = unpad
point[cu_seqlens_key] = nn.functional.pad(
torch.concat(cu_seqlens), (0, 1), value=_offset_pad[-1]
)
return point[pad_key], point[unpad_key], point[cu_seqlens_key]
def forward(self, point):
if not self.enable_flash:
self.patch_size = min(
offset2bincount(point.offset).min().tolist(), self.patch_size_max
)
H = self.num_heads
K = self.patch_size
C = self.channels
pad, unpad, cu_seqlens = self.get_padding_and_inverse(point)
order = point.serialized_order[self.order_index][pad]
inverse = unpad[point.serialized_inverse[self.order_index]]
# padding and reshape feat and batch for serialized point patch
qkv = self.qkv(point.feat)[order]
if self.enable_qknorm:
qkv = self.qknorm(qkv)
if not self.enable_flash:
# encode and reshape qkv: (N', K, 3, H, C') => (3, N', H, K, C')
q, k, v = (
qkv.reshape(-1, K, 3, H, C // H).permute(2, 0, 3, 1, 4).unbind(dim=0)
)
# attn
if self.upcast_attention:
q = q.float()
k = k.float()
attn = (q * self.scale) @ k.transpose(-2, -1) # (N', H, K, K)
if self.enable_rpe:
attn = attn + self.rpe(self.get_rel_pos(point, order))
if self.upcast_softmax:
attn = attn.float()
attn = self.softmax(attn)
attn = self.attn_drop(attn).to(qkv.dtype)
feat = (attn @ v).transpose(1, 2).reshape(-1, C)
else:
feat = flash_attn.flash_attn_varlen_qkvpacked_func(
qkv.half().reshape(-1, 3, H, C // H),
cu_seqlens,
max_seqlen=self.patch_size,
dropout_p=self.attn_drop if self.training else 0,
softmax_scale=self.scale,
).reshape(-1, C)
feat = feat.to(qkv.dtype)
feat = feat[inverse]
# ffn
feat = self.proj(feat)
feat = self.proj_drop(feat)
point.feat = feat
return point
class MLP(nn.Module):
def __init__(
self,
in_channels,
hidden_channels=None,
out_channels=None,
act_layer=nn.GELU,
drop=0.0,
):
super().__init__()
out_channels = out_channels or in_channels
hidden_channels = hidden_channels or in_channels
self.fc1 = nn.Linear(in_channels, hidden_channels)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_channels, out_channels)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Block(PointModule):
def __init__(
self,
channels,
num_heads,
patch_size=48,
mlp_ratio=4.0,
qkv_bias=True,
qk_scale=None,
attn_drop=0.0,
proj_drop=0.0,
drop_path=0.0,
norm_layer=nn.LayerNorm,
act_layer=nn.GELU,
pre_norm=True,
order_index=0,
cpe_indice_key=None,
enable_rpe=False,
enable_flash=True,
upcast_attention=True,
upcast_softmax=True,
enable_qknorm=False,
):
super().__init__()
self.channels = channels
self.pre_norm = pre_norm
self.cpe = PointSequential(
spconv.SubMConv3d(
channels,
channels,
kernel_size=3,
bias=True,
indice_key=cpe_indice_key,
),
nn.Linear(channels, channels),
norm_layer(channels),
)
self.norm1 = PointSequential(norm_layer(channels))
self.attn = SerializedAttention(
channels=channels,
patch_size=patch_size,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=proj_drop,
order_index=order_index,
enable_rpe=enable_rpe,
enable_flash=enable_flash,
upcast_attention=upcast_attention,
upcast_softmax=upcast_softmax,
enable_qknorm=enable_qknorm,
)
self.norm2 = PointSequential(norm_layer(channels))
self.mlp = PointSequential(
MLP(
in_channels=channels,
hidden_channels=int(channels * mlp_ratio),
out_channels=channels,
act_layer=act_layer,
drop=proj_drop,
)
)
self.drop_path = PointSequential(
DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
)
def forward(self, point: Point):
shortcut = point.feat
point = self.cpe(point)
point.feat = shortcut + point.feat
shortcut = point.feat
if self.pre_norm:
point = self.norm1(point)
point = self.drop_path(self.attn(point))
point.feat = shortcut + point.feat
if not self.pre_norm:
point = self.norm1(point)
shortcut = point.feat
if self.pre_norm:
point = self.norm2(point)
point = self.drop_path(self.mlp(point))
point.feat = shortcut + point.feat
if not self.pre_norm:
point = self.norm2(point)
# point.sparse_conv_feat.replace_feature(point.feat)
point.sparse_conv_feat = point.sparse_conv_feat.replace_feature(point.feat)
return point
class SerializedPooling(PointModule):
def __init__(
self,
in_channels,
out_channels,
stride=2,
norm_layer=None,
act_layer=None,
reduce="max",
shuffle_orders=True,
traceable=True, # record parent and cluster
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
assert stride == 2 ** (math.ceil(stride) - 1).bit_length() # 2, 4, 8
# TODO: add support to grid pool (any stride)
self.stride = stride
assert reduce in ["sum", "mean", "min", "max"]
self.reduce = reduce
self.shuffle_orders = shuffle_orders
self.traceable = traceable
self.proj = nn.Linear(in_channels, out_channels)
if norm_layer is not None:
self.norm = PointSequential(norm_layer(out_channels))
if act_layer is not None:
self.act = PointSequential(act_layer())
def forward(self, point: Point):
pooling_depth = (math.ceil(self.stride) - 1).bit_length()
if pooling_depth > point.serialized_depth:
pooling_depth = 0
assert {
"serialized_code",
"serialized_order",
"serialized_inverse",
"serialized_depth",
}.issubset(
point.keys()
), "Run point.serialization() point cloud before SerializedPooling"
code = point.serialized_code >> pooling_depth * 3
code_, cluster, counts = torch.unique(
code[0],
sorted=True,
return_inverse=True,
return_counts=True,
)
# indices of point sorted by cluster, for torch_scatter.segment_csr
_, indices = torch.sort(cluster)
# index pointer for sorted point, for torch_scatter.segment_csr
idx_ptr = torch.cat([counts.new_zeros(1), torch.cumsum(counts, dim=0)])
# head_indices of each cluster, for reduce attr e.g. code, batch
head_indices = indices[idx_ptr[:-1]]
# generate down code, order, inverse
code = code[:, head_indices]
order = torch.argsort(code)
inverse = torch.zeros_like(order).scatter_(
dim=1,
index=order,
src=torch.arange(0, code.shape[1], device=order.device).repeat(
code.shape[0], 1
),
)
if self.shuffle_orders:
perm = torch.randperm(code.shape[0])
code = code[perm]
order = order[perm]
inverse = inverse[perm]
# collect information
point_dict = Dict(
feat=torch_scatter.segment_csr(
self.proj(point.feat)[indices], idx_ptr, reduce=self.reduce
),
coord=torch_scatter.segment_csr(
point.coord[indices], idx_ptr, reduce="mean"
),
grid_coord=point.grid_coord[head_indices] >> pooling_depth,
serialized_code=code,
serialized_order=order,
serialized_inverse=inverse,
serialized_depth=point.serialized_depth - pooling_depth,
batch=point.batch[head_indices],
)
if "condition" in point.keys():
point_dict["condition"] = point.condition
if "context" in point.keys():
point_dict["context"] = point.context
if self.traceable:
point_dict["pooling_inverse"] = cluster
point_dict["pooling_parent"] = point
point = Point(point_dict)
if self.norm is not None:
point = self.norm(point)
if self.act is not None:
point = self.act(point)
point.sparsify()
return point
class SerializedUnpooling(PointModule):
def __init__(
self,
in_channels,
skip_channels,
out_channels,
norm_layer=None,
act_layer=None,
traceable=False, # record parent and cluster
):
super().__init__()
self.proj = PointSequential(nn.Linear(in_channels, out_channels))
self.proj_skip = PointSequential(nn.Linear(skip_channels, out_channels))
if norm_layer is not None:
self.proj.add(norm_layer(out_channels))
self.proj_skip.add(norm_layer(out_channels))
if act_layer is not None:
self.proj.add(act_layer())
self.proj_skip.add(act_layer())
self.traceable = traceable
def forward(self, point):
assert "pooling_parent" in point.keys()
assert "pooling_inverse" in point.keys()
parent = point.pop("pooling_parent")
inverse = point.pop("pooling_inverse")
point = self.proj(point)
parent = self.proj_skip(parent)
parent.feat = parent.feat + point.feat[inverse]
if self.traceable:
parent["unpooling_parent"] = point
return parent
class Embedding(PointModule):
def __init__(
self,
in_channels,
embed_channels,
norm_layer=None,
act_layer=None,
res_linear=False,
):
super().__init__()
self.in_channels = in_channels
self.embed_channels = embed_channels
# TODO: check remove spconv
self.stem = PointSequential(
conv=spconv.SubMConv3d(
in_channels,
embed_channels,
kernel_size=5,
padding=1,
bias=False,
indice_key="stem",
)
)
if norm_layer is not None:
self.stem.add(norm_layer(embed_channels), name="norm")
if act_layer is not None:
self.stem.add(act_layer(), name="act")
if res_linear:
self.res_linear = nn.Linear(in_channels, embed_channels)
else:
self.res_linear = None
def forward(self, point: Point):
if self.res_linear:
res_feature = self.res_linear(point.feat)
point = self.stem(point)
if self.res_linear:
point.feat = point.feat + res_feature
point.sparse_conv_feat = point.sparse_conv_feat.replace_feature(point.feat)
return point
class PointTransformerV3Object(PointModule):
def __init__(
self,
in_channels=9,
order=("z", "z-trans", "hilbert", "hilbert-trans"),
stride=(),
enc_depths=(3, 3, 3, 6, 16),
enc_channels=(32, 64, 128, 256, 384),
enc_num_head=(2, 4, 8, 16, 24),
enc_patch_size=(1024, 1024, 1024, 1024, 1024),
mlp_ratio=4,
qkv_bias=True,
qk_scale=None,
attn_drop=0.0,
proj_drop=0.0,
drop_path=0.0,
pre_norm=True,
shuffle_orders=True,
enable_rpe=False,
enable_flash=True,
upcast_attention=False,
upcast_softmax=False,
cls_mode=False,
enable_qknorm=False,
layer_norm=False,
res_linear=True,
):
super().__init__()
self.num_stages = len(enc_depths)
self.order = [order] if isinstance(order, str) else order
self.cls_mode = cls_mode
self.shuffle_orders = shuffle_orders
# norm layers
if layer_norm:
bn_layer = partial(nn.LayerNorm)
else:
print("WARNING: use BatchNorm in ptv3obj !!!")
bn_layer = partial(nn.BatchNorm1d, eps=1e-3, momentum=0.01)
ln_layer = nn.LayerNorm
# activation layers
act_layer = nn.GELU
self.embedding = Embedding(
in_channels=in_channels,
embed_channels=enc_channels[0],
norm_layer=bn_layer,
act_layer=act_layer,
res_linear=res_linear,
)
# encoder
enc_drop_path = [
x.item() for x in torch.linspace(0, drop_path, sum(enc_depths))
]
self.enc = PointSequential()
for s in range(self.num_stages):
enc_drop_path_ = enc_drop_path[
sum(enc_depths[:s]) : sum(enc_depths[: s + 1])
]
enc = PointSequential()
if s > 0:
enc.add(nn.Linear(enc_channels[s - 1], enc_channels[s]))
for i in range(enc_depths[s]):
enc.add(
Block(
channels=enc_channels[s],
num_heads=enc_num_head[s],
patch_size=enc_patch_size[s],
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=proj_drop,
drop_path=enc_drop_path_[i],
norm_layer=ln_layer,
act_layer=act_layer,
pre_norm=pre_norm,
order_index=i % len(self.order),
cpe_indice_key=f"stage{s}",
enable_rpe=enable_rpe,
enable_flash=enable_flash,
upcast_attention=upcast_attention,
upcast_softmax=upcast_softmax,
enable_qknorm=enable_qknorm,
),
name=f"block{i}",
)
if len(enc) != 0:
self.enc.add(module=enc, name=f"enc{s}")
def forward(self, data_dict, min_coord=None):
point = Point(data_dict)
point.serialization(order=self.order, shuffle_orders=self.shuffle_orders, min_coord=min_coord)
point.sparsify()
point = self.embedding(point)
point = self.enc(point)
return point
def get_encoder(pretrained_path: Union[str, None]=None, freeze_encoder: bool=False, **kwargs) -> PointTransformerV3Object:
point_encoder = PointTransformerV3Object(**kwargs)
if pretrained_path is not None:
checkpoint = torch.load(pretrained_path)
state_dict = checkpoint["state_dict"]
state_dict = {k.replace('module.', ''): v for k, v in state_dict.items()}
point_encoder.load_state_dict(state_dict, strict=False)
if freeze_encoder is True:
for name, param in point_encoder.named_parameters():
if 'res_linear' not in name and 'qknorm' not in name:
param.requires_grad = False
return point_encoder |