File size: 23,148 Bytes
f499d3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
from functools import partial
from addict import Dict
import math
import torch
import torch.nn as nn
import spconv.pytorch as spconv
import torch_scatter
from timm.models.layers import DropPath
from typing import Union
from einops import rearrange

try:
    import flash_attn
except ImportError:
    flash_attn = None

from .utils.misc import offset2bincount
from .utils.structure import Point
from .modules import PointModule, PointSequential


class RPE(torch.nn.Module):
    def __init__(self, patch_size, num_heads):
        super().__init__()
        self.patch_size = patch_size
        self.num_heads = num_heads
        self.pos_bnd = int((4 * patch_size) ** (1 / 3) * 2)
        self.rpe_num = 2 * self.pos_bnd + 1
        self.rpe_table = torch.nn.Parameter(torch.zeros(3 * self.rpe_num, num_heads))
        torch.nn.init.trunc_normal_(self.rpe_table, std=0.02)

    def forward(self, coord):
        idx = (
            coord.clamp(-self.pos_bnd, self.pos_bnd)  # clamp into bnd
            + self.pos_bnd  # relative position to positive index
            + torch.arange(3, device=coord.device) * self.rpe_num  # x, y, z stride
        )
        out = self.rpe_table.index_select(0, idx.reshape(-1))
        out = out.view(idx.shape + (-1,)).sum(3)
        out = out.permute(0, 3, 1, 2)  # (N, K, K, H) -> (N, H, K, K)
        return out

class QueryKeyNorm(nn.Module):
    def __init__(self, channels, num_heads):
        super(QueryKeyNorm, self).__init__()
        self.num_heads = num_heads
        self.norm = nn.LayerNorm(channels // num_heads, elementwise_affine=False)

    def forward(self, qkv):
        H = self.num_heads
        #qkv = qkv.reshape(-1, 3, H, qkv.shape[1] // H).permute(1, 0, 2, 3)
        qkv = rearrange(qkv, 'N (S H Ch) -> S N H Ch', H=H, S=3)
        q, k, v = qkv.unbind(dim=0)
        # q, k, v: [N, H, C // H]
        q_norm = self.norm(q)
        k_norm = self.norm(k)

        # qkv_norm: [3, N, H, C // H]
        qkv_norm = torch.stack([q_norm, k_norm, v])
        qkv_norm = rearrange(qkv_norm, 'S N H Ch -> N (S H Ch)')
        return qkv_norm

class SerializedAttention(PointModule):
    def __init__(
        self,
        channels,
        num_heads,
        patch_size,
        qkv_bias=True,
        qk_scale=None,
        attn_drop=0.0,
        proj_drop=0.0,
        order_index=0,
        enable_rpe=False,
        enable_flash=True,
        upcast_attention=True,
        upcast_softmax=True,
        enable_qknorm=False,
    ):
        super().__init__()
        assert channels % num_heads == 0, f"channels {channels} must be divisible by num_heads {num_heads}"
        self.channels = channels
        self.num_heads = num_heads
        self.scale = qk_scale or (channels // num_heads) ** -0.5
        self.order_index = order_index
        self.upcast_attention = upcast_attention
        self.upcast_softmax = upcast_softmax
        self.enable_rpe = enable_rpe
        self.enable_flash = enable_flash
        self.enable_qknorm = enable_qknorm
        if enable_qknorm:
            self.qknorm = QueryKeyNorm(channels, num_heads)
        else:
            print("WARNING: enable_qknorm is False in PTv3Object and training may be fragile")
        if enable_flash:
            assert (
                enable_rpe is False
            ), "Set enable_rpe to False when enable Flash Attention"
            assert (
                upcast_attention is False
            ), "Set upcast_attention to False when enable Flash Attention"
            assert (
                upcast_softmax is False
            ), "Set upcast_softmax to False when enable Flash Attention"
            assert flash_attn is not None, "Make sure flash_attn is installed."
            self.patch_size = patch_size
            self.attn_drop = attn_drop
        else:
            # when disable flash attention, we still don't want to use mask
            # consequently, patch size will auto set to the
            # min number of patch_size_max and number of points
            self.patch_size_max = patch_size
            self.patch_size = 0
            self.attn_drop = torch.nn.Dropout(attn_drop)

        self.qkv = torch.nn.Linear(channels, channels * 3, bias=qkv_bias)
        self.proj = torch.nn.Linear(channels, channels)
        self.proj_drop = torch.nn.Dropout(proj_drop)
        self.softmax = torch.nn.Softmax(dim=-1)
        self.rpe = RPE(patch_size, num_heads) if self.enable_rpe else None

    @torch.no_grad()
    def get_rel_pos(self, point, order):
        K = self.patch_size
        rel_pos_key = f"rel_pos_{self.order_index}"
        if rel_pos_key not in point.keys():
            grid_coord = point.grid_coord[order]
            grid_coord = grid_coord.reshape(-1, K, 3)
            point[rel_pos_key] = grid_coord.unsqueeze(2) - grid_coord.unsqueeze(1)
        return point[rel_pos_key]

    @torch.no_grad()
    def get_padding_and_inverse(self, point):
        pad_key = "pad"
        unpad_key = "unpad"
        cu_seqlens_key = "cu_seqlens_key"
        if (
            pad_key not in point.keys()
            or unpad_key not in point.keys()
            or cu_seqlens_key not in point.keys()
        ):
            offset = point.offset
            bincount = offset2bincount(offset)
            bincount_pad = (
                torch.div(
                    bincount + self.patch_size - 1,
                    self.patch_size,
                    rounding_mode="trunc",
                )
                * self.patch_size
            )
            # only pad point when num of points larger than patch_size
            mask_pad = bincount > self.patch_size
            bincount_pad = ~mask_pad * bincount + mask_pad * bincount_pad
            _offset = nn.functional.pad(offset, (1, 0))
            _offset_pad = nn.functional.pad(torch.cumsum(bincount_pad, dim=0), (1, 0))
            pad = torch.arange(_offset_pad[-1], device=offset.device)
            unpad = torch.arange(_offset[-1], device=offset.device)
            cu_seqlens = []
            for i in range(len(offset)):
                unpad[_offset[i] : _offset[i + 1]] += _offset_pad[i] - _offset[i]
                if bincount[i] != bincount_pad[i]:
                    pad[
                        _offset_pad[i + 1]
                        - self.patch_size
                        + (bincount[i] % self.patch_size) : _offset_pad[i + 1]
                    ] = pad[
                        _offset_pad[i + 1]
                        - 2 * self.patch_size
                        + (bincount[i] % self.patch_size) : _offset_pad[i + 1]
                        - self.patch_size
                    ]
                pad[_offset_pad[i] : _offset_pad[i + 1]] -= _offset_pad[i] - _offset[i]
                cu_seqlens.append(
                    torch.arange(
                        _offset_pad[i],
                        _offset_pad[i + 1],
                        step=self.patch_size,
                        dtype=torch.int32,
                        device=offset.device,
                    )
                )
            point[pad_key] = pad
            point[unpad_key] = unpad
            point[cu_seqlens_key] = nn.functional.pad(
                torch.concat(cu_seqlens), (0, 1), value=_offset_pad[-1]
            )
        return point[pad_key], point[unpad_key], point[cu_seqlens_key]

    def forward(self, point):
        if not self.enable_flash:
            self.patch_size = min(
                offset2bincount(point.offset).min().tolist(), self.patch_size_max
            )

        H = self.num_heads
        K = self.patch_size
        C = self.channels

        pad, unpad, cu_seqlens = self.get_padding_and_inverse(point)

        order = point.serialized_order[self.order_index][pad]
        inverse = unpad[point.serialized_inverse[self.order_index]]

        # padding and reshape feat and batch for serialized point patch
        qkv = self.qkv(point.feat)[order]
        if self.enable_qknorm:
            qkv = self.qknorm(qkv)

        if not self.enable_flash:
            # encode and reshape qkv: (N', K, 3, H, C') => (3, N', H, K, C')
            q, k, v = (
                qkv.reshape(-1, K, 3, H, C // H).permute(2, 0, 3, 1, 4).unbind(dim=0)
            )
            # attn
            if self.upcast_attention:
                q = q.float()
                k = k.float()
            attn = (q * self.scale) @ k.transpose(-2, -1)  # (N', H, K, K)
            if self.enable_rpe:
                attn = attn + self.rpe(self.get_rel_pos(point, order))
            if self.upcast_softmax:
                attn = attn.float()
            attn = self.softmax(attn)
            attn = self.attn_drop(attn).to(qkv.dtype)
            feat = (attn @ v).transpose(1, 2).reshape(-1, C)
        else:
            feat = flash_attn.flash_attn_varlen_qkvpacked_func(
                qkv.half().reshape(-1, 3, H, C // H),
                cu_seqlens,
                max_seqlen=self.patch_size,
                dropout_p=self.attn_drop if self.training else 0,
                softmax_scale=self.scale,
            ).reshape(-1, C)
            feat = feat.to(qkv.dtype)
        feat = feat[inverse]

        # ffn
        feat = self.proj(feat)
        feat = self.proj_drop(feat)
        point.feat = feat
        return point


class MLP(nn.Module):
    def __init__(
        self,
        in_channels,
        hidden_channels=None,
        out_channels=None,
        act_layer=nn.GELU,
        drop=0.0,
    ):
        super().__init__()
        out_channels = out_channels or in_channels
        hidden_channels = hidden_channels or in_channels
        self.fc1 = nn.Linear(in_channels, hidden_channels)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_channels, out_channels)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class Block(PointModule):
    def __init__(
        self,
        channels,
        num_heads,
        patch_size=48,
        mlp_ratio=4.0,
        qkv_bias=True,
        qk_scale=None,
        attn_drop=0.0,
        proj_drop=0.0,
        drop_path=0.0,
        norm_layer=nn.LayerNorm,
        act_layer=nn.GELU,
        pre_norm=True,
        order_index=0,
        cpe_indice_key=None,
        enable_rpe=False,
        enable_flash=True,
        upcast_attention=True,
        upcast_softmax=True,
        enable_qknorm=False,
    ):
        super().__init__()
        self.channels = channels
        self.pre_norm = pre_norm

        self.cpe = PointSequential(
            spconv.SubMConv3d(
                channels,
                channels,
                kernel_size=3,
                bias=True,
                indice_key=cpe_indice_key,
            ),
            nn.Linear(channels, channels),
            norm_layer(channels),
        )

        self.norm1 = PointSequential(norm_layer(channels))
        self.attn = SerializedAttention(
            channels=channels,
            patch_size=patch_size,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            qk_scale=qk_scale,
            attn_drop=attn_drop,
            proj_drop=proj_drop,
            order_index=order_index,
            enable_rpe=enable_rpe,
            enable_flash=enable_flash,
            upcast_attention=upcast_attention,
            upcast_softmax=upcast_softmax,
            enable_qknorm=enable_qknorm,
        )
        self.norm2 = PointSequential(norm_layer(channels))
        self.mlp = PointSequential(
            MLP(
                in_channels=channels,
                hidden_channels=int(channels * mlp_ratio),
                out_channels=channels,
                act_layer=act_layer,
                drop=proj_drop,
            )
        )
        self.drop_path = PointSequential(
            DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
        )

    def forward(self, point: Point):
        shortcut = point.feat
        point = self.cpe(point)
        point.feat = shortcut + point.feat
        shortcut = point.feat
        if self.pre_norm:
            point = self.norm1(point)
        point = self.drop_path(self.attn(point))
        point.feat = shortcut + point.feat
        if not self.pre_norm:
            point = self.norm1(point)

        shortcut = point.feat
        if self.pre_norm:
            point = self.norm2(point)
        point = self.drop_path(self.mlp(point))
        point.feat = shortcut + point.feat
        if not self.pre_norm:
            point = self.norm2(point)
        # point.sparse_conv_feat.replace_feature(point.feat)
        point.sparse_conv_feat = point.sparse_conv_feat.replace_feature(point.feat)
        return point


class SerializedPooling(PointModule):
    def __init__(
        self,
        in_channels,
        out_channels,
        stride=2,
        norm_layer=None,
        act_layer=None,
        reduce="max",
        shuffle_orders=True,
        traceable=True,  # record parent and cluster
    ):
        super().__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels

        assert stride == 2 ** (math.ceil(stride) - 1).bit_length()  # 2, 4, 8
        # TODO: add support to grid pool (any stride)
        self.stride = stride
        assert reduce in ["sum", "mean", "min", "max"]
        self.reduce = reduce
        self.shuffle_orders = shuffle_orders
        self.traceable = traceable

        self.proj = nn.Linear(in_channels, out_channels)
        if norm_layer is not None:
            self.norm = PointSequential(norm_layer(out_channels))
        if act_layer is not None:
            self.act = PointSequential(act_layer())

    def forward(self, point: Point):
        pooling_depth = (math.ceil(self.stride) - 1).bit_length()
        if pooling_depth > point.serialized_depth:
            pooling_depth = 0
        assert {
            "serialized_code",
            "serialized_order",
            "serialized_inverse",
            "serialized_depth",
        }.issubset(
            point.keys()
        ), "Run point.serialization() point cloud before SerializedPooling"

        code = point.serialized_code >> pooling_depth * 3
        code_, cluster, counts = torch.unique(
            code[0],
            sorted=True,
            return_inverse=True,
            return_counts=True,
        )
        # indices of point sorted by cluster, for torch_scatter.segment_csr
        _, indices = torch.sort(cluster)
        # index pointer for sorted point, for torch_scatter.segment_csr
        idx_ptr = torch.cat([counts.new_zeros(1), torch.cumsum(counts, dim=0)])
        # head_indices of each cluster, for reduce attr e.g. code, batch
        head_indices = indices[idx_ptr[:-1]]
        # generate down code, order, inverse
        code = code[:, head_indices]
        order = torch.argsort(code)
        inverse = torch.zeros_like(order).scatter_(
            dim=1,
            index=order,
            src=torch.arange(0, code.shape[1], device=order.device).repeat(
                code.shape[0], 1
            ),
        )

        if self.shuffle_orders:
            perm = torch.randperm(code.shape[0])
            code = code[perm]
            order = order[perm]
            inverse = inverse[perm]

        # collect information
        point_dict = Dict(
            feat=torch_scatter.segment_csr(
                self.proj(point.feat)[indices], idx_ptr, reduce=self.reduce
            ),
            coord=torch_scatter.segment_csr(
                point.coord[indices], idx_ptr, reduce="mean"
            ),
            grid_coord=point.grid_coord[head_indices] >> pooling_depth,
            serialized_code=code,
            serialized_order=order,
            serialized_inverse=inverse,
            serialized_depth=point.serialized_depth - pooling_depth,
            batch=point.batch[head_indices],
        )

        if "condition" in point.keys():
            point_dict["condition"] = point.condition
        if "context" in point.keys():
            point_dict["context"] = point.context

        if self.traceable:
            point_dict["pooling_inverse"] = cluster
            point_dict["pooling_parent"] = point
        point = Point(point_dict)
        if self.norm is not None:
            point = self.norm(point)
        if self.act is not None:
            point = self.act(point)
        point.sparsify()
        return point


class SerializedUnpooling(PointModule):
    def __init__(
        self,
        in_channels,
        skip_channels,
        out_channels,
        norm_layer=None,
        act_layer=None,
        traceable=False,  # record parent and cluster
    ):
        super().__init__()
        self.proj = PointSequential(nn.Linear(in_channels, out_channels))
        self.proj_skip = PointSequential(nn.Linear(skip_channels, out_channels))

        if norm_layer is not None:
            self.proj.add(norm_layer(out_channels))
            self.proj_skip.add(norm_layer(out_channels))

        if act_layer is not None:
            self.proj.add(act_layer())
            self.proj_skip.add(act_layer())

        self.traceable = traceable

    def forward(self, point):
        assert "pooling_parent" in point.keys()
        assert "pooling_inverse" in point.keys()
        parent = point.pop("pooling_parent")
        inverse = point.pop("pooling_inverse")
        point = self.proj(point)
        parent = self.proj_skip(parent)
        parent.feat = parent.feat + point.feat[inverse]

        if self.traceable:
            parent["unpooling_parent"] = point
        return parent


class Embedding(PointModule):
    def __init__(
        self,
        in_channels,
        embed_channels,
        norm_layer=None,
        act_layer=None,
        res_linear=False,
    ):
        super().__init__()
        self.in_channels = in_channels
        self.embed_channels = embed_channels

        # TODO: check remove spconv
        self.stem = PointSequential(
            conv=spconv.SubMConv3d(
                in_channels,
                embed_channels,
                kernel_size=5,
                padding=1,
                bias=False,
                indice_key="stem",
            )
        )
        if norm_layer is not None:
            self.stem.add(norm_layer(embed_channels), name="norm")
        if act_layer is not None:
            self.stem.add(act_layer(), name="act")
        
        if res_linear:
            self.res_linear = nn.Linear(in_channels, embed_channels)
        else:
            self.res_linear = None

    def forward(self, point: Point):
        if self.res_linear:
            res_feature = self.res_linear(point.feat)
        point = self.stem(point)
        if self.res_linear:
            point.feat = point.feat + res_feature
        point.sparse_conv_feat = point.sparse_conv_feat.replace_feature(point.feat)
        return point


class PointTransformerV3Object(PointModule):
    def __init__(
        self,
        in_channels=9,
        order=("z", "z-trans", "hilbert", "hilbert-trans"),
        stride=(),
        enc_depths=(3, 3, 3, 6, 16),
        enc_channels=(32, 64, 128, 256, 384),
        enc_num_head=(2, 4, 8, 16, 24),
        enc_patch_size=(1024, 1024, 1024, 1024, 1024),
        mlp_ratio=4,
        qkv_bias=True,
        qk_scale=None,
        attn_drop=0.0,
        proj_drop=0.0,
        drop_path=0.0,
        pre_norm=True,
        shuffle_orders=True,
        enable_rpe=False,
        enable_flash=True,
        upcast_attention=False,
        upcast_softmax=False,
        cls_mode=False,
        enable_qknorm=False,
        layer_norm=False,
        res_linear=True,
    ):
        super().__init__()
        self.num_stages = len(enc_depths)
        self.order = [order] if isinstance(order, str) else order
        self.cls_mode = cls_mode
        self.shuffle_orders = shuffle_orders

        # norm layers
        if layer_norm:
            bn_layer = partial(nn.LayerNorm)
        else:
            print("WARNING: use BatchNorm in ptv3obj !!!")
            bn_layer = partial(nn.BatchNorm1d, eps=1e-3, momentum=0.01)
        ln_layer = nn.LayerNorm
        # activation layers
        act_layer = nn.GELU

        self.embedding = Embedding(
            in_channels=in_channels,
            embed_channels=enc_channels[0],
            norm_layer=bn_layer,
            act_layer=act_layer,
            res_linear=res_linear,
        )

        # encoder
        enc_drop_path = [
            x.item() for x in torch.linspace(0, drop_path, sum(enc_depths))
        ]
        self.enc = PointSequential()
        for s in range(self.num_stages):
            enc_drop_path_ = enc_drop_path[
                sum(enc_depths[:s]) : sum(enc_depths[: s + 1])
            ]
            enc = PointSequential()
            if s > 0:
                enc.add(nn.Linear(enc_channels[s - 1], enc_channels[s]))

            for i in range(enc_depths[s]):
                enc.add(
                    Block(
                        channels=enc_channels[s],
                        num_heads=enc_num_head[s],
                        patch_size=enc_patch_size[s],
                        mlp_ratio=mlp_ratio,
                        qkv_bias=qkv_bias,
                        qk_scale=qk_scale,
                        attn_drop=attn_drop,
                        proj_drop=proj_drop,
                        drop_path=enc_drop_path_[i],
                        norm_layer=ln_layer,
                        act_layer=act_layer,
                        pre_norm=pre_norm,
                        order_index=i % len(self.order),
                        cpe_indice_key=f"stage{s}",
                        enable_rpe=enable_rpe,
                        enable_flash=enable_flash,
                        upcast_attention=upcast_attention,
                        upcast_softmax=upcast_softmax,
                        enable_qknorm=enable_qknorm,
                    ),
                    name=f"block{i}",
                )
            if len(enc) != 0:
                self.enc.add(module=enc, name=f"enc{s}")


    def forward(self, data_dict, min_coord=None):
        point = Point(data_dict)
        point.serialization(order=self.order, shuffle_orders=self.shuffle_orders, min_coord=min_coord)
        point.sparsify()
        point = self.embedding(point)
        point = self.enc(point)
        return point

def get_encoder(pretrained_path: Union[str, None]=None, freeze_encoder: bool=False, **kwargs) -> PointTransformerV3Object:
    point_encoder = PointTransformerV3Object(**kwargs)
    if pretrained_path is not None:
        checkpoint = torch.load(pretrained_path)
        state_dict = checkpoint["state_dict"]
        state_dict = {k.replace('module.', ''): v for k, v in state_dict.items()}
        point_encoder.load_state_dict(state_dict, strict=False)
    if freeze_encoder is True:
        for name, param in point_encoder.named_parameters():
            if 'res_linear' not in name and 'qknorm' not in name:
                param.requires_grad = False
    return point_encoder