jkorstad's picture
Correctly add UniRig source files
f499d3b
# -*- coding: utf-8 -*-
#
# This file is part of UniRig.
#
# This file is derived from https://github.com/NeuralCarver/Michelangelo
#
# Copyright (c) https://github.com/NeuralCarver/Michelangelo original authors
# Copyright (c) 2025 VAST-AI-Research and contributors.
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
Adapted from: https://github.com/openai/guided-diffusion/blob/22e0df8183507e13a7813f8d38d51b072ca1e67c/guided_diffusion/nn.py#L124
"""
import torch
from typing import Callable, Iterable, Sequence, Union
from packaging import version
def checkpoint(
func: Callable[..., Union[torch.Tensor, Sequence[torch.Tensor]]],
inputs: Sequence[torch.Tensor],
params: Iterable[torch.Tensor],
flag: bool,
use_deepspeed: bool = False
):
"""
Evaluate a function without caching intermediate activations, allowing for
reduced memory at the expense of extra compute in the backward pass.
:param func: the function to evaluate.
:param inputs: the argument sequence to pass to `func`.
:param params: a sequence of parameters `func` depends on but does not
explicitly take as arguments.
:param flag: if False, disable gradient checkpointing.
:param use_deepspeed: if True, use deepspeed
"""
if flag:
if use_deepspeed:
import deepspeed
return deepspeed.checkpointing.checkpoint(func, *inputs)
args = tuple(inputs) + tuple(params)
return CheckpointFunction.apply(func, len(inputs), *args)
else:
return func(*inputs)
class CheckpointFunction(torch.autograd.Function):
@staticmethod
def _get_fwd_decorator():
if version.parse(torch.__version__) >= version.parse('2.5.0'):
return torch.amp.custom_fwd(device_type='cuda')
else:
return torch.cuda.amp.custom_fwd()
@staticmethod
def _get_bwd_decorator():
if version.parse(torch.__version__) >= version.parse('2.5.0'):
return torch.amp.custom_bwd(device_type='cuda')
else:
def custom_bwd(bwd):
return torch.cuda.amp.custom_bwd(bwd=bwd)
return custom_bwd
@staticmethod
@_get_fwd_decorator()
def forward(ctx, run_function, length, *args):
ctx.run_function = run_function
ctx.input_tensors = list(args[:length])
ctx.input_params = list(args[length:])
with torch.no_grad():
output_tensors = ctx.run_function(*ctx.input_tensors)
return output_tensors
@staticmethod
@_get_bwd_decorator()
def backward(ctx, *output_grads):
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
with torch.enable_grad():
# Fixes a bug where the first op in run_function modifies the
# Tensor storage in place, which is not allowed for detach()'d
# Tensors.
shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
output_tensors = ctx.run_function(*shallow_copies)
input_grads = torch.autograd.grad(
output_tensors,
ctx.input_tensors + ctx.input_params,
output_grads,
allow_unused=True,
)
del ctx.input_tensors
del ctx.input_params
del output_tensors
return (None, None) + input_grads