Spaces:
Paused
Paused
File size: 1,005 Bytes
6c036c1 aab52b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# Cargar el modelo y tokenizador
model_name = "BSC-LT/salamandra-7b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16)
# Función de generación de texto
def generate_response(prompt):
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(inputs.input_ids, max_length=200, do_sample=True, temperature=0.7)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# Crear la interfaz en Gradio
with gr.Blocks() as demo:
gr.Markdown("# 🧠 Chatbot ALIA - Prueba en Hugging Face")
with gr.Row():
input_text = gr.Textbox(label="Escribe tu texto aquí")
output_text = gr.Textbox(label="Respuesta de ALIA")
submit_button = gr.Button("Generar respuesta")
submit_button.click(generate_response, inputs=input_text, outputs=output_text)
demo.launch()
|