Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -2,23 +2,32 @@ import gradio as gr
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
4 |
|
5 |
-
# Cargar el modelo y tokenizador
|
6 |
model_name = "BSC-LT/salamandra-7b-instruct"
|
7 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16)
|
9 |
|
10 |
-
# Funci贸n de generaci贸n
|
11 |
def generate_response(prompt):
|
12 |
inputs = tokenizer(prompt, return_tensors="pt")
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
15 |
|
16 |
-
#
|
17 |
with gr.Blocks() as demo:
|
18 |
-
gr.Markdown("# 馃 Chatbot ALIA -
|
19 |
-
|
20 |
-
|
21 |
-
output_text = gr.Textbox(label="Respuesta de ALIA")
|
22 |
submit_button = gr.Button("Generar respuesta")
|
23 |
submit_button.click(generate_response, inputs=input_text, outputs=output_text)
|
24 |
|
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
4 |
|
5 |
+
# Cargar el modelo y el tokenizador
|
6 |
model_name = "BSC-LT/salamandra-7b-instruct"
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
8 |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16)
|
9 |
|
10 |
+
# Funci贸n de generaci贸n optimizada
|
11 |
def generate_response(prompt):
|
12 |
inputs = tokenizer(prompt, return_tensors="pt")
|
13 |
+
|
14 |
+
outputs = model.generate(
|
15 |
+
inputs.input_ids,
|
16 |
+
max_length=60, # 馃敼 Antes: 100 | Ahora: 60 (reduce tiempo sin cortar demasiado)
|
17 |
+
do_sample=True,
|
18 |
+
temperature=0.65, # 馃敼 Antes: 0.7 | Ahora: 0.65 (ligera reducci贸n de aleatoriedad)
|
19 |
+
top_p=0.9, # 馃敼 Nuevo: Prioriza palabras m谩s probables para mayor fluidez
|
20 |
+
repetition_penalty=1.2, # 馃敼 Nuevo: Evita respuestas repetitivas
|
21 |
+
early_stopping=True, # 馃敼 Nuevo: Reduce tiempos innecesarios
|
22 |
+
)
|
23 |
+
|
24 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
25 |
|
26 |
+
# Interfaz en Gradio
|
27 |
with gr.Blocks() as demo:
|
28 |
+
gr.Markdown("# 馃 Chatbot ALIA - Optimizado")
|
29 |
+
input_text = gr.Textbox(label="Escribe tu texto aqu铆")
|
30 |
+
output_text = gr.Textbox(label="Respuesta de ALIA")
|
|
|
31 |
submit_button = gr.Button("Generar respuesta")
|
32 |
submit_button.click(generate_response, inputs=input_text, outputs=output_text)
|
33 |
|