joaocansi
commited on
Commit
·
357cf66
1
Parent(s):
b9cf3e2
feat: add bert and isoforest
Browse files
app.py
CHANGED
@@ -1,7 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
def
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
demo = gr.Interface(fn=
|
7 |
demo.launch()
|
|
|
1 |
+
from transformers import BertTokenizer, BertModel, AutoTokenizer, AutoModel
|
2 |
+
from sklearn.ensemble import IsolationForest
|
3 |
+
from tqdm import tqdm
|
4 |
+
|
5 |
+
import torch
|
6 |
import gradio as gr
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained("neuralmind/bert-base-portuguese-cased")
|
10 |
+
model = AutoModel.from_pretrained("neuralmind/bert-base-portuguese-cased")
|
11 |
+
model.eval()
|
12 |
+
|
13 |
+
data = np.load("X_test.npy")
|
14 |
+
iso_forest = IsolationForest(contamination=0.1, random_state=42)
|
15 |
+
iso_forest.fit(data)
|
16 |
|
17 |
+
def test_email(text):
|
18 |
+
with torch.no_grad():
|
19 |
+
inputs = tokenizer(text, return_tensors='pt', truncation=True, padding=True, max_length=256)
|
20 |
+
outputs = model(**inputs)
|
21 |
+
cls_embedding = outputs.last_hidden_state[:, 0, :].cpu().numpy()
|
22 |
+
pred = iso_forest.predict(cls_embedding)[0]
|
23 |
+
if pred == -1:
|
24 |
+
return "Anomaly detected"
|
25 |
+
else:
|
26 |
+
return "Normal"
|
27 |
|
28 |
+
demo = gr.Interface(fn=test_email, inputs="text", outputs="text")
|
29 |
demo.launch()
|