init commit
Browse files- app.py +282 -0
- requirements.txt +1 -0
app.py
ADDED
|
@@ -0,0 +1,282 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import matplotlib
|
| 2 |
+
matplotlib.use('Agg')
|
| 3 |
+
|
| 4 |
+
import functools
|
| 5 |
+
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import matplotlib.pyplot as plt
|
| 8 |
+
import seaborn as sns
|
| 9 |
+
import pandas as pd
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
# benchmark order: pytorch, tf eager, tf xla; units = ms
|
| 13 |
+
BENCHMARK_DATA = {
|
| 14 |
+
"Greedy Decoding": {
|
| 15 |
+
"DistilGPT2": {
|
| 16 |
+
"T4": [336.22, 3976.23, 115.84],
|
| 17 |
+
"3090": [158.38, 1835.82, 46.56],
|
| 18 |
+
"A100": [371.49, 4073.84, 60.94],
|
| 19 |
+
},
|
| 20 |
+
"GPT2": {
|
| 21 |
+
"T4": [607.31, 7140.23, 185.12],
|
| 22 |
+
"3090": [297.03, 3308.31, 76.68],
|
| 23 |
+
"A100": [691.75, 7323.60, 110.72],
|
| 24 |
+
},
|
| 25 |
+
"OPT-1.3B": {
|
| 26 |
+
"T4": [1303.41, 15939.07, 1488.15],
|
| 27 |
+
"3090": [428.33, 7259.43, 468.37],
|
| 28 |
+
"A100": [1125.00, 16713.63, 384.52],
|
| 29 |
+
},
|
| 30 |
+
"GPTJ-6B": {
|
| 31 |
+
"T4": [0, 0, 0],
|
| 32 |
+
"3090": [0, 0, 0],
|
| 33 |
+
"A100": [2664.28, 32783.09, 1440.06],
|
| 34 |
+
},
|
| 35 |
+
"T5 Small": {
|
| 36 |
+
"T4": [99.88, 1527.73, 18.78],
|
| 37 |
+
"3090": [55.09, 665.70, 9.25],
|
| 38 |
+
"A100": [124.91, 1642.07, 13.72],
|
| 39 |
+
},
|
| 40 |
+
"T5 Base": {
|
| 41 |
+
"T4": [416.56, 6095.05, 106.12],
|
| 42 |
+
"3090": [223.00, 2503.28, 46.67],
|
| 43 |
+
"A100": [550.76, 6504.11, 64.57],
|
| 44 |
+
},
|
| 45 |
+
"T5 Large": {
|
| 46 |
+
"T4": [645.05, 9587.67, 225.17],
|
| 47 |
+
"3090": [377.74, 4216.41, 97.92],
|
| 48 |
+
"A100": [944.17, 10572.43, 116.52],
|
| 49 |
+
},
|
| 50 |
+
"T5 3B": {
|
| 51 |
+
"T4": [1493.61, 13629.80, 1494.80],
|
| 52 |
+
"3090": [694.75, 6316.79, 489.33],
|
| 53 |
+
"A100": [1801.68, 16707.71, 411.93],
|
| 54 |
+
},
|
| 55 |
+
},
|
| 56 |
+
"Sampling": {
|
| 57 |
+
"DistilGPT2": {
|
| 58 |
+
"T4": [617.40, 6078.81, 221.65],
|
| 59 |
+
"3090": [310.37, 2843.73, 85.44],
|
| 60 |
+
"A100": [729.05, 7140.05, 121.83],
|
| 61 |
+
},
|
| 62 |
+
"GPT2": {
|
| 63 |
+
"T4": [1205.34, 12256.98, 378.69],
|
| 64 |
+
"3090": [577.12, 5637.11, 160.02],
|
| 65 |
+
"A100": [1377.68, 15605.72, 234.47],
|
| 66 |
+
},
|
| 67 |
+
"OPT-1.3B": {
|
| 68 |
+
"T4": [2166.72, 19126.25, 2341.32],
|
| 69 |
+
"3090": [706.50, 9616.97, 731.58],
|
| 70 |
+
"A100": [2019.70, 28621.09, 690.36],
|
| 71 |
+
},
|
| 72 |
+
"GPTJ-6B": {
|
| 73 |
+
"T4": [0, 0, 0],
|
| 74 |
+
"3090": [0, 0, 0],
|
| 75 |
+
"A100": [5150.35, 70554.07, 2744.49],
|
| 76 |
+
},
|
| 77 |
+
"T5 Small": {
|
| 78 |
+
"T4": [235.93, 3599.47, 41.07],
|
| 79 |
+
"3090": [100.41, 1093.33, 23.24],
|
| 80 |
+
"A100": [267.42, 3366.73, 28.53],
|
| 81 |
+
},
|
| 82 |
+
"T5 Base": {
|
| 83 |
+
"T4": [812.59, 7966.73, 196.85],
|
| 84 |
+
"3090": [407.81, 4904.54, 97.56],
|
| 85 |
+
"A100": [1033.05, 11521.97, 123.93],
|
| 86 |
+
},
|
| 87 |
+
"T5 Large": {
|
| 88 |
+
"T4": [1114.22, 16433.31, 424.91],
|
| 89 |
+
"3090": [647.61, 7184.71, 160.97],
|
| 90 |
+
"A100": [1668.73, 19962.78, 200.75],
|
| 91 |
+
},
|
| 92 |
+
"T5 3B": {
|
| 93 |
+
"T4": [2282.56, 20891.22, 2196.02],
|
| 94 |
+
"3090": [1011.32, 9735.97, 734.40],
|
| 95 |
+
"A100": [2769.64, 26440.65, 612.98],
|
| 96 |
+
},
|
| 97 |
+
},
|
| 98 |
+
"Beam Search": {
|
| 99 |
+
"DistilGPT2": {
|
| 100 |
+
"T4": [2407.89, 19442.60, 3313.92],
|
| 101 |
+
"3090": [998.52, 8286.03, 900.28],
|
| 102 |
+
"A100": [2237.41, 21771.40, 760.47],
|
| 103 |
+
},
|
| 104 |
+
"GPT2": {
|
| 105 |
+
"T4": [3767.43, 34813.93, 5559.42],
|
| 106 |
+
"3090": [1633.04, 14606.93, 1533.55],
|
| 107 |
+
"A100": [3705.43, 34586.23, 1295.87],
|
| 108 |
+
},
|
| 109 |
+
"OPT-1.3B": {
|
| 110 |
+
"T4": [16649.82, 78500.33, 21894.31],
|
| 111 |
+
"3090": [508518, 32822.81, 5762.46],
|
| 112 |
+
"A100": [5967.32, 78334.56, 4096.38],
|
| 113 |
+
},
|
| 114 |
+
"GPTJ-6B": {
|
| 115 |
+
"T4": [0, 0, 0],
|
| 116 |
+
"3090": [0, 0, 0],
|
| 117 |
+
"A100": [15119.10, 134000.40, 10214.17],
|
| 118 |
+
},
|
| 119 |
+
"T5 Small": {
|
| 120 |
+
"T4": [283.64, 25089.12, 1391.66],
|
| 121 |
+
"3090": [137.38, 10680.28, 486.96],
|
| 122 |
+
"A100": [329.28, 24747.38, 513.99],
|
| 123 |
+
},
|
| 124 |
+
"T5 Base": {
|
| 125 |
+
"T4": [1383.21, 44809.14, 3920.40],
|
| 126 |
+
"3090": [723.11, 18657.48, 1258.60],
|
| 127 |
+
"A100": [2360.85, 45085.07, 1107.58],
|
| 128 |
+
},
|
| 129 |
+
"T5 Large": {
|
| 130 |
+
"T4": [1663.50, 81902.41, 9551.29],
|
| 131 |
+
"3090": [922.53, 35524.30, 2838.86],
|
| 132 |
+
"A100": [2168.22, 86890.00, 2373.04],
|
| 133 |
+
},
|
| 134 |
+
"T5 3B": {
|
| 135 |
+
"T4": [0, 0, 0],
|
| 136 |
+
"3090": [1521.05, 35337.30, 8282.09],
|
| 137 |
+
"A100": [3162.54, 88453.65, 5585.20],
|
| 138 |
+
},
|
| 139 |
+
},
|
| 140 |
+
}
|
| 141 |
+
FIGURE_PATH = "plt.png"
|
| 142 |
+
FIG_DPI = 300
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
def get_plot(model_name, plot_eager, generate_type):
|
| 146 |
+
df = pd.DataFrame(BENCHMARK_DATA[generate_type][model_name])
|
| 147 |
+
df["framework"] = ["PyTorch", "TF (Eager Execution)", "TF (XLA)"]
|
| 148 |
+
df = pd.melt(df, id_vars=["framework"], value_vars=["T4", "3090", "A100"])
|
| 149 |
+
if plot_eager == "No":
|
| 150 |
+
df = df[df["framework"] != "TF (Eager Execution)"]
|
| 151 |
+
|
| 152 |
+
g = sns.catplot(
|
| 153 |
+
data=df,
|
| 154 |
+
kind="bar",
|
| 155 |
+
x="variable",
|
| 156 |
+
y="value",
|
| 157 |
+
hue="framework",
|
| 158 |
+
palette={"PyTorch": "blue", "TF (Eager Execution)": "orange", "TF (XLA)": "red"},
|
| 159 |
+
alpha=.9,
|
| 160 |
+
)
|
| 161 |
+
g.despine(left=True)
|
| 162 |
+
g.set_axis_labels("GPU", "Generation time (ms)")
|
| 163 |
+
g.legend.set_title("Framework")
|
| 164 |
+
|
| 165 |
+
# Add the number to the top of each bar
|
| 166 |
+
ax = g.facet_axis(0, 0)
|
| 167 |
+
for i in ax.containers:
|
| 168 |
+
ax.bar_label(i,)
|
| 169 |
+
|
| 170 |
+
plt.savefig(FIGURE_PATH, dpi=FIG_DPI)
|
| 171 |
+
return FIGURE_PATH
|
| 172 |
+
|
| 173 |
+
demo = gr.Blocks()
|
| 174 |
+
|
| 175 |
+
with demo:
|
| 176 |
+
gr.Markdown(
|
| 177 |
+
"""
|
| 178 |
+
# TensorFlow XLA Text Generation Benchmark
|
| 179 |
+
Instructions:
|
| 180 |
+
1. Pick a tab for the type of generation (or for benchmark information);
|
| 181 |
+
2. Select a model from the dropdown menu;
|
| 182 |
+
3. Optionally omit results from TensorFlow Eager Execution, if you wish to better compare the performance of
|
| 183 |
+
PyTorch to TensorFlow with XLA.
|
| 184 |
+
"""
|
| 185 |
+
)
|
| 186 |
+
with gr.Tabs():
|
| 187 |
+
with gr.TabItem("Greedy Decoding"):
|
| 188 |
+
plot_fn = functools.partial(get_plot, generate_type="Greedy Decoding")
|
| 189 |
+
with gr.Row():
|
| 190 |
+
with gr.Column():
|
| 191 |
+
model_selector = gr.Dropdown(
|
| 192 |
+
choices=["DistilGPT2", "GPT2", "OPT-1.3B", "GPTJ-6B", "T5 Small", "T5 Base", "T5 Large", "T5 3B"],
|
| 193 |
+
value="T5 Small",
|
| 194 |
+
label="Model",
|
| 195 |
+
interactive=True,
|
| 196 |
+
)
|
| 197 |
+
eager_enabler = gr.Radio(
|
| 198 |
+
["Yes", "No"],
|
| 199 |
+
value="Yes",
|
| 200 |
+
label="Plot TF Eager Execution?",
|
| 201 |
+
interactive=True
|
| 202 |
+
)
|
| 203 |
+
gr.Markdown(
|
| 204 |
+
"""
|
| 205 |
+
### Greedy Decoding benchmark parameters
|
| 206 |
+
- `max_new_tokens = 64`;
|
| 207 |
+
- `pad_to_multiple_of = 64` for Tensorflow XLA models. Others do not pad (input prompts between 2 and 33 tokens).
|
| 208 |
+
"""
|
| 209 |
+
)
|
| 210 |
+
plot = gr.Image(value=plot_fn("T5 Small", "Yes")) # Show plot when the gradio app is initialized
|
| 211 |
+
model_selector.change(fn=plot_fn, inputs=[model_selector, eager_enabler], outputs=plot)
|
| 212 |
+
eager_enabler.change(fn=plot_fn, inputs=[model_selector, eager_enabler], outputs=plot)
|
| 213 |
+
with gr.TabItem("Sampling"):
|
| 214 |
+
plot_fn = functools.partial(get_plot, generate_type="Sampling")
|
| 215 |
+
with gr.Row():
|
| 216 |
+
with gr.Column():
|
| 217 |
+
model_selector = gr.Dropdown(
|
| 218 |
+
choices=["DistilGPT2", "GPT2", "OPT-1.3B", "GPTJ-6B", "T5 Small", "T5 Base", "T5 Large", "T5 3B"],
|
| 219 |
+
value="T5 Small",
|
| 220 |
+
label="Model",
|
| 221 |
+
interactive=True,
|
| 222 |
+
)
|
| 223 |
+
eager_enabler = gr.Radio(
|
| 224 |
+
["Yes", "No"],
|
| 225 |
+
value="Yes",
|
| 226 |
+
label="Plot TF Eager Execution?",
|
| 227 |
+
interactive=True
|
| 228 |
+
)
|
| 229 |
+
gr.Markdown(
|
| 230 |
+
"""
|
| 231 |
+
### Sampling benchmark parameters
|
| 232 |
+
- `max_new_tokens = 128`;
|
| 233 |
+
- `temperature = 2.0`;
|
| 234 |
+
- `top_k = 50`;
|
| 235 |
+
- `pad_to_multiple_of = 64` for Tensorflow XLA models. Others do not pad (input prompts between 2 and 33 tokens).
|
| 236 |
+
"""
|
| 237 |
+
)
|
| 238 |
+
plot = gr.Image(value=plot_fn("T5 Small", "Yes")) # Show plot when the gradio app is initialized
|
| 239 |
+
model_selector.change(fn=plot_fn, inputs=[model_selector, eager_enabler], outputs=plot)
|
| 240 |
+
eager_enabler.change(fn=plot_fn, inputs=[model_selector, eager_enabler], outputs=plot)
|
| 241 |
+
with gr.TabItem("Beam Search"):
|
| 242 |
+
plot_fn = functools.partial(get_plot, generate_type="Beam Search")
|
| 243 |
+
with gr.Row():
|
| 244 |
+
with gr.Column():
|
| 245 |
+
model_selector = gr.Dropdown(
|
| 246 |
+
choices=["DistilGPT2", "GPT2", "OPT-1.3B", "GPTJ-6B", "T5 Small", "T5 Base", "T5 Large", "T5 3B"],
|
| 247 |
+
value="T5 Small",
|
| 248 |
+
label="Model",
|
| 249 |
+
interactive=True,
|
| 250 |
+
)
|
| 251 |
+
eager_enabler = gr.Radio(
|
| 252 |
+
["Yes", "No"],
|
| 253 |
+
value="Yes",
|
| 254 |
+
label="Plot TF Eager Execution?",
|
| 255 |
+
interactive=True
|
| 256 |
+
)
|
| 257 |
+
gr.Markdown(
|
| 258 |
+
"""
|
| 259 |
+
### Beam Search benchmark parameters
|
| 260 |
+
- `max_new_tokens = 256`;
|
| 261 |
+
- `num_beams = 16`;
|
| 262 |
+
- `pad_to_multiple_of = 64` for Tensorflow XLA models. Others do not pad (input prompts between 2 and 33 tokens).
|
| 263 |
+
"""
|
| 264 |
+
)
|
| 265 |
+
plot = gr.Image(value=plot_fn("T5 Small", "Yes")) # Show plot when the gradio app is initialized
|
| 266 |
+
model_selector.change(fn=plot_fn, inputs=[model_selector, eager_enabler], outputs=plot)
|
| 267 |
+
eager_enabler.change(fn=plot_fn, inputs=[model_selector, eager_enabler], outputs=plot)
|
| 268 |
+
with gr.TabItem("Benchmark Information"):
|
| 269 |
+
gr.Dataframe(
|
| 270 |
+
headers=["Parameter", "Value"],
|
| 271 |
+
value=[
|
| 272 |
+
["Transformers Version", "4.21"],
|
| 273 |
+
["TensorFlow Version", "2.9.1"],
|
| 274 |
+
["Pytorch Version", "1.11.0"],
|
| 275 |
+
["OS", "22.04 LTS (3090) / Debian 10 (other GPUs)"],
|
| 276 |
+
["CUDA", "11.6 (3090) / 11.3 (others GPUs)"],
|
| 277 |
+
["Number of Runs", "100 (the first run was discarded to ignore compilation time)"],
|
| 278 |
+
["Is there code to reproduce?", "Yes -- https://gist.github.com/gante/f0017e3f13ac11b0c02e4e4db351f52f"],
|
| 279 |
+
],
|
| 280 |
+
)
|
| 281 |
+
|
| 282 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
seaborn
|