#!/usr/bin/env python3 import argparse import os from pathlib import Path from PIL import Image, ImageDraw from docling_core.types.doc import DoclingDocument, ImageRefMode from docling_core.types.doc.document import DocTagsDocument import torch from transformers import AutoProcessor, AutoModelForVision2Seq from transformers.image_utils import load_image import sys from pdf2image import convert_from_path import tempfile import json import matplotlib.pyplot as plt from pprint import pprint import base64 from dotenv import load_dotenv import openai from azure.ai.documentintelligence import DocumentIntelligenceClient from azure.core.credentials import AzureKeyCredential from smoldocling.overlays import generate_azure_overlay_html, generate_docling_overlay from PIL import Image import requests from io import BytesIO DEVICE = "cuda" if torch.cuda.is_available() else "cpu" load_dotenv() def load_model(verbose=True): """Load the Smoldocling model and return model and processor.""" if verbose: print("Loading Smoldocling model...") model_path = "ds4sd/SmolDocling-256M-preview" processor = AutoProcessor.from_pretrained(model_path) model = AutoModelForVision2Seq.from_pretrained( model_path, torch_dtype=torch.float16, # Use float16 for T4 GPU ).to(DEVICE) return model, processor def run_model(model, processor, image, prompt="Convert this page to docling.", verbose=True): """Run the Smoldocling model with the given image and prompt and return the doctags.""" # Prepare inputs messages = [ { "role": "user", "content": [ {"type": "image"}, {"type": "text", "text": prompt} ] }, ] formatted_prompt = processor.apply_chat_template(messages, add_generation_prompt=True) inputs = processor( text=formatted_prompt, images=[image], return_tensors="pt", truncation=True, # ✅ Avoid truncation warning ).to(DEVICE) # Generate output if verbose: print("Generating text...") generated_ids = model.generate(**inputs, max_new_tokens=8192) prompt_length = inputs.input_ids.shape[1] trimmed_generated_ids = generated_ids[:, prompt_length:] return processor.batch_decode(trimmed_generated_ids, skip_special_tokens=False)[0].lstrip() def extract_text_from_document(image_path, model, processor, output_format="html", verbose=True): """Extract text from a document image using Smoldocling-256.""" try: # Load and preprocess the image image = Image.open(image_path) if verbose: print(f"Processing {image_path}") print(f"Image mode: {image.mode}") print(f"Image size: {image.size}") # Run docling vlm output = run_model(model, processor, image, verbose=verbose) doctags_doc = DocTagsDocument.from_doctags_and_image_pairs( [output], [image] ) doc = DoclingDocument(name=Path(image_path).stem).load_from_doctags(doctags_doc) # Handle formatting and export if output_format == "json": # Export to dict (no images) doc_dict = doc.export_to_dict() # Remove images from the dict if present if "pictures" in doc_dict: for picture in doc_dict["pictures"]: if "image" in picture: if "uri" in picture["image"]: del picture["image"]["uri"] return doc_dict else: html_output = doc.export_to_html(image_mode=ImageRefMode.EMBEDDED) return html_output except Exception as e: if verbose: print(f"Error processing 1: {image_path}: {str(e)}", file=sys.stderr) return None def process_pdf(pdf_path, model, processor, output_dir, output_format="html", debug=False, verbose=True): """Process a PDF file by converting it to images and processing each page.""" try: if verbose: print(f"\nProcessing PDF: {pdf_path}") # Convert PDF to images with tempfile.TemporaryDirectory() as temp_dir: if verbose: print("Converting PDF to images...") # TODO: Review this. It's not working when the PDF is large. images = convert_from_path( pdf_path, output_folder=temp_dir, first_page=1, fmt="png" ) if not images: if verbose: print(f"No pages found in PDF: {pdf_path}", file=sys.stderr) return all_doctags = [] all_images = [] for i, image in enumerate(images, start=1): image_path = os.path.join(temp_dir, f"page_{i}.png") image.save(image_path, "PNG") if verbose: print(f"\nProcessing page {i}") try: image = Image.open(image_path) if verbose: print(f"Processing {image_path}") print(f"Image mode: {image.mode}") print(f"Image size: {image.size}") output = run_model(model, processor, image, verbose=verbose) cleaned_output = output.replace("", "").strip() # If you have charts: if "" in cleaned_output: cleaned_output = cleaned_output.replace("", "").replace("", "") all_doctags.append(cleaned_output) all_images.append(image) if verbose: print(f"Successfully processed page {i}") # DEBUG: Dump per-page JSON if requested if debug and output_dir is not None: # Create a single-page DocTagsDocument and DoclingDocument doctags_doc_page = DocTagsDocument.from_doctags_and_image_pairs([cleaned_output], [image]) doc_page = DoclingDocument(name=f"{Path(pdf_path).stem}_p{i}") doc_page.load_from_doctags(doctags_doc_page) doc_dict_page = doc_page.export_to_dict() # Remove images from the dict if present if "pages" in doc_dict_page: for page in doc_dict_page["pages"]: if "image" in page: page["image"] = None page_json_path = Path(output_dir) / f"{Path(pdf_path).stem}_p{i}.json" with open(page_json_path, 'w', encoding='utf-8') as f: json.dump(doc_dict_page, f, ensure_ascii=False, indent=2) if verbose: print(f"[DEBUG] Dumped page {i} JSON to {page_json_path}") except Exception as e: if verbose: print(f"Error processing page {i}: {str(e)}", file=sys.stderr) if all_doctags and all_images: doctags_doc = DocTagsDocument.from_doctags_and_image_pairs( all_doctags, all_images ) doc = DoclingDocument(name=Path(pdf_path).stem) doc.load_from_doctags(doctags_doc) if output_format == "json": doc_dict = doc.export_to_dict() if "pages" in doc_dict: for page in doc_dict["pages"]: if "image" in page: page["image"] = None if output_dir is None: return doc_dict output_filename = f"{Path(pdf_path).stem}.json" output_path = Path(output_dir) / output_filename with open(output_path, 'w', encoding='utf-8') as f: json.dump(doc_dict, f, ensure_ascii=False, indent=2) if verbose: print(f"\nSuccessfully saved combined output to {output_path}") else: html_output = doc.export_to_html(image_mode=ImageRefMode.EMBEDDED) if output_dir is None: return html_output output_filename = f"{Path(pdf_path).stem}.html" output_path = Path(output_dir) / output_filename with open(output_path, 'w', encoding='utf-8') as f: f.write(html_output) if verbose: print(f"\nSuccessfully saved combined output to {output_path}") else: if verbose: print("No pages were successfully processed", file=sys.stderr) except Exception as e: if verbose: print(f"Error processing PDF {pdf_path}: {str(e)}", file=sys.stderr) def process_files(input_files, output_dir, output_format="html", debug=False, verbose=True): """Process multiple input files and generate outputs in the specified format.""" if output_dir is not None: os.makedirs(output_dir, exist_ok=True) model, processor = load_model(verbose=verbose) results = [] for input_file in input_files: try: input_path = Path(input_file) if input_path.suffix.lower() == '.pdf': if output_dir is None: # Collect results instead of writing to files pdf_result = process_pdf(input_file, model, processor, None, output_format=output_format, debug=debug, verbose=verbose) if pdf_result: results.extend(pdf_result) else: process_pdf(input_file, model, processor, output_dir, output_format=output_format, debug=debug, verbose=verbose) else: if verbose: print(f"\nProcessing: {input_file}") doc_dict = extract_text_from_document(input_path, model, processor, output_format=output_format, verbose=verbose) if doc_dict: if output_dir is None: results.append(doc_dict) else: output_path = Path(output_dir) / f"{input_path.stem}.{output_format}" if verbose: print(f"Output will be saved to: {output_path}") with open(output_path, 'w', encoding='utf-8') as f: if output_format == "json": json.dump(doc_dict, f, ensure_ascii=False, indent=2) elif output_format == "html": f.write(doc_dict) if verbose: print(f"Successfully processed {input_file}") else: if verbose: print(f"Failed to process {input_file}", file=sys.stderr) except Exception as e: if verbose: print(f"Error processing 2 {input_file}: {str(e)}", file=sys.stderr) if output_dir is None: return results def visualize_doc(doc_path, page_num=0): """ Visualize a document (PDF or image) with bounding boxes from its corresponding JSON annotation. Args: doc_path (str): Path to the input document file (PDF or image) page_num (int): Page number to visualize for PDFs (default 0) """ # Load document if doc_path.lower().endswith('.pdf'): # Handle PDF with pdf2image # pdf_doc = fitz.open(doc_path) # page = pdf_doc[page_num] # pix = page.get_pixmap() # image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) images = convert_from_path(doc_path, first_page=1) image = images[page_num] else: # Handle image image = Image.open(doc_path).convert("RGB") # Load corresponding JSON json_path = doc_path.replace("input", "output").replace(".png", ".json") if doc_path.lower().endswith('.pdf'): # For PDFs, append page number to JSON filename json_path = json_path.replace(".pdf", f"_p{page_num+1}.json") with open(json_path, "r") as f: doc = json.load(f) # Collect all bounding boxes from texts and pictures bboxes = [] labels = [] for text in doc.get("texts", []): for prov in text.get("prov", []): # Only process boxes from specified page for PDFs # if doc_path.lower().endswith('.pdf') and prov.get("page_no") != page_num + 1: if doc_path.lower().endswith('.pdf') and prov.get("page_no") != 1: # currently only works for first page continue bbox = prov.get("bbox") if bbox: bboxes.append([bbox["l"], bbox["t"], bbox["r"], bbox["b"]]) labels.append(text.get("label", "")) for pic in doc.get("pictures", []): for prov in pic.get("prov", []): # Only process boxes from specified page for PDFs # if doc_path.lower().endswith('.pdf') and prov.get("page_no") != page_num + 1: if doc_path.lower().endswith('.pdf') and prov.get("page_no") != 1: # currently only works for first page continue bbox = prov.get("bbox") if bbox: bboxes.append([bbox["l"], bbox["t"], bbox["r"], bbox["b"]]) labels.append(pic.get("label", "picture")) for table in doc.get("tables", []): for prov in table.get("prov", []): bbox = prov.get("bbox") if bbox: bboxes.append([bbox["l"], bbox["t"], bbox["r"], bbox["b"]]) labels.append(table.get("label", "")) # Draw bounding boxes draw = ImageDraw.Draw(image) for (l, t, r, b), label in zip(bboxes, labels): draw.rectangle([l, t, r, b], outline="red", width=2) if label: draw.text((l, t-10), f"{label} ({l:.1f}, {t:.1f}, {r:.1f}, {b:.1f})", fill="red") # Display plt.figure(figsize=(10, 12)) plt.imshow(image) plt.axis("off") plt.show() def stitch_text_from_json(json_path, gpt_fix=False): """ Given a JSON file in the DoclingDocument format, stitch together all text fragments in the order specified in the body and group sections. Print the result as plain text. Optionally send to GPT to fix line breaks and hyphenation. Returns the stitched (and optionally cleaned) text as a string. """ stitched_text = None with open(json_path, 'r', encoding='utf-8') as f: doc = json.load(f) texts = doc.get('texts', []) groups = doc.get('groups', []) body = doc.get('body', {}) # Build lookup tables texts_by_ref = {f"#/texts/{i}": t for i, t in enumerate(texts)} groups_by_ref = {g['self_ref']: g for g in groups} def extract_texts(children): result = [] for child in children: ref = child.get('$ref') if ref is None: continue if ref.startswith('#/texts/'): text_obj = texts_by_ref.get(ref) if text_obj: text = text_obj.get('text', '') if text: result.append(text) elif ref.startswith('#/groups/'): group_obj = groups_by_ref.get(ref) if group_obj: result.extend(extract_texts(group_obj.get('children', []))) return result stitched_texts = extract_texts(body.get('children', [])) final_text = '\n'.join(stitched_texts) if gpt_fix: try: api_key = os.environ.get('OPENAI_API_KEY') if not api_key: print("OPENAI_API_KEY not set. Printing original stitched text.", file=sys.stderr) print(final_text) return final_text client = openai.OpenAI(api_key=api_key) prompt = ( "You are a helpful assistant. " "The following text was extracted from a document and may contain odd line breaks, hyphenated words split across lines, or other OCR artifacts. " "Please rewrite the text as clean, readable prose, fixing line breaks, joining hyphenated words, and correcting obvious errors, but do not add or remove content.\n\n" f"Text to fix:\n\n{final_text}\n\nCleaned text:" ) response = client.chat.completions.create( model="gpt-4o-mini", messages=[{"role": "user", "content": prompt}], max_tokens=4096, temperature=0.0, ) cleaned_text = response.choices[0].message.content.strip() print(cleaned_text) return cleaned_text except Exception as e: print(f"[GPT-fix error] {e}. Printing original stitched text.", file=sys.stderr) print(final_text) return final_text else: print(final_text) return final_text def extract_with_azure(input_files, output_dir, output_format="json", verbose=True): endpoint = os.environ.get("AZURE_DOCUMENT_INTELLIGENCE_ENDPOINT") key = os.environ.get("AZURE_DOCUMENT_INTELLIGENCE_KEY") if not endpoint or not key: print("Azure endpoint/key not set. Set AZURE_DOCUMENT_INTELLIGENCE_ENDPOINT and AZURE_DOCUMENT_INTELLIGENCE_KEY in your environment.", file=sys.stderr) return client = DocumentIntelligenceClient(endpoint, AzureKeyCredential(key)) os.makedirs(output_dir, exist_ok=True) for input_file in input_files: with open(input_file, "rb") as f: file_bytes = f.read() poller = client.begin_analyze_document( model_id="prebuilt-layout", body={"base64Source": base64.b64encode(file_bytes).decode("utf-8")} ) result = poller.result() output_path = Path(output_dir) / (Path(input_file).stem + ".json") with open(output_path, "w", encoding="utf-8") as out_f: json.dump(result.as_dict(), out_f, ensure_ascii=False, indent=2) if verbose: print(f"Azure baseline output saved to {output_path}") def main(): parser = argparse.ArgumentParser( description="Process document images and PDFs using Smoldocling and generate HTML or JSON outputs" ) subparsers = parser.add_subparsers(dest="command", required=False) # Default parser for main processing parser_main = subparsers.add_parser("process", help="Process images or PDFs to HTML/JSON (default)") parser_main.add_argument( 'input_files', nargs='+', help='One or more input files (images or PDFs) to process' ) parser_main.add_argument( '-o', '--output-dir', default='output', help='Output directory for result files (default: output)' ) parser_main.add_argument( '--format', choices=['html', 'json'], default='html', help='Output format: html or json (default: html)' ) parser_main.add_argument( '--debug', action='store_true', help='Enable debug mode: dump each PDF page as a separate JSON file.' ) # Overlay HTML subcommand parser_overlay = subparsers.add_parser("overlay-html", help="Generate HTML overlay from PNG and JSON") parser_overlay.add_argument('image_file', help='Source PNG image file') parser_overlay.add_argument('json_file', help='Extracted JSON file with bounding boxes') parser_overlay.add_argument('-o', '--output', help='Output HTML file (default: _overlay.html)') # Stitch text subcommand parser_stitch = subparsers.add_parser("stitch-text", help="Stitch together text fragments from a JSON file and print as plain text") parser_stitch.add_argument('json_file', help='Extracted JSON file to stitch') parser_stitch.add_argument('--gpt-fix', action='store_true', help='Send stitched text to GPT to fix line breaks and hyphenation') # Azure baseline subcommand parser_azure = subparsers.add_parser( "azure-baseline", help="Extract content using Azure Document Intelligence for baseline comparison" ) parser_azure.add_argument( 'input_files', nargs='+', help='One or more input files (images or PDFs) to process with Azure Document Intelligence' ) parser_azure.add_argument( '-o', '--output-dir', default='output_azure', help='Output directory for Azure baseline result files (default: output_azure)' ) parser_azure.add_argument( '--format', choices=['json'], default='json', help='Output format: json (default: json)' ) # Azure overlay HTML subcommand parser_azure_overlay = subparsers.add_parser("azure-overlay-html", help="Generate HTML overlay for Azure Document Intelligence output (words)") parser_azure_overlay.add_argument('--image', required=True, help='Path to scanned image file') parser_azure_overlay.add_argument('--json', required=True, help='Path to Azure Document Intelligence JSON file') parser_azure_overlay.add_argument('--output', required=True, help='Path to output HTML file') args = parser.parse_args() if args.command == "overlay-html": output_html = args.output or (os.path.splitext(args.image_file)[0] + "_overlay.html") generate_docling_overlay(args.image_file, args.json_file, output_html) return if args.command == "stitch-text": stitch_text_from_json(args.json_file, gpt_fix=getattr(args, 'gpt_fix', False)) return if args.command == "azure-baseline": extract_with_azure( args.input_files, args.output_dir, output_format=args.format, verbose=True ) return if args.command == "azure-overlay-html": generate_azure_overlay_html(args.image, args.json, args.output) return # Default: process valid_files = [] for file_path in args.input_files: if not os.path.exists(file_path): print(f"Warning: File not found: {file_path}", file=sys.stderr) else: valid_files.append(file_path) if not valid_files: print("Error: No valid input files provided", file=sys.stderr) sys.exit(1) process_files(valid_files, args.output_dir, output_format=args.format, debug=args.debug) if __name__ == '__main__': main()