from transformers import pipeline from PIL import Image, ImageFilter import gradio as gr import torch import numpy as np # --- Depth-Based Blur using a Pipeline --- # Use the pipeline for depth estimation with the small model. depth_pipe = pipeline(task="depth-estimation", model="depth-anything/Depth-Anything-V2-Small-hf") def compute_depth_map_pipeline(image: Image.Image, scale_factor: float) -> np.ndarray: """ Computes a depth map using the Hugging Face pipeline. The returned depth is inverted (so near=0 and far=1) and scaled. """ result = depth_pipe(image) # No [0] index; the pipeline returns a dictionary depth_map = np.array(result["depth"]) # Invert depth so that near becomes 0 and far becomes 1 depth_map = 1.0 - depth_map depth_map *= scale_factor return depth_map def layered_blur(image: Image.Image, depth_map: np.ndarray, num_layers: int, max_blur: float) -> Image.Image: """ Applies multiple levels of Gaussian blur based on depth. The image is blurred with increasing radii and then composited using a mask derived from the depth map divided into bins. """ blur_radii = np.linspace(0, max_blur, num_layers) blur_versions = [image.filter(ImageFilter.GaussianBlur(r)) for r in blur_radii] upper_bound = depth_map.max() thresholds = np.linspace(0, upper_bound, num_layers + 1) final_image = blur_versions[-1] for i in range(num_layers - 1, -1, -1): mask_array = np.logical_and(depth_map >= thresholds[i], depth_map < thresholds[i + 1]).astype(np.uint8) * 255 mask_image = Image.fromarray(mask_array, mode="L") final_image = Image.composite(blur_versions[i], final_image, mask_image) return final_image def process_depth_blur_pipeline(uploaded_image, max_blur_value, scale_factor, num_layers): """ Processes an uploaded image using depth-based blur. The image is resized to 512x512, its depth is computed via the pipeline, and a layered blur is applied. """ if not isinstance(uploaded_image, Image.Image): uploaded_image = Image.open(uploaded_image) image = uploaded_image.convert("RGB").resize((512, 512)) depth_map = compute_depth_map_pipeline(image, scale_factor) final_image = layered_blur(image, depth_map, int(num_layers), max_blur_value) return final_image # --- Segmentation-Based Blur using BEN2 --- def load_segmentation_model(): """ Loads and caches the segmentation model from BEN2. Ensure you have ben2 installed and accessible in your path. """ global seg_model, seg_device if "seg_model" not in globals(): from ben2 import BEN_Base # Import BEN2 seg_model = BEN_Base.from_pretrained("PramaLLC/BEN2") seg_device = torch.device("cuda" if torch.cuda.is_available() else "cpu") seg_model.to(seg_device).eval() return seg_model, seg_device def process_segmentation_blur(uploaded_image, seg_blur_radius: float): """ Processes the image with segmentation-based blur. The image is resized to 512x512. A Gaussian blur with the specified radius is applied, then the segmentation mask is computed to composite the sharp foreground over the blurred background. """ if not isinstance(uploaded_image, Image.Image): uploaded_image = Image.open(uploaded_image) image = uploaded_image.convert("RGB").resize((512, 512)) seg_model, seg_device = load_segmentation_model() blurred_image = image.filter(ImageFilter.GaussianBlur(seg_blur_radius)) # Generate segmentation mask (foreground) foreground = seg_model.inference(image, refine_foreground=False) foreground_rgba = foreground.convert("RGBA") _, _, _, alpha = foreground_rgba.split() binary_mask = alpha.point(lambda x: 255 if x > 128 else 0, mode="L") final_image = Image.composite(image, blurred_image, binary_mask) return final_image # --- Merged Gradio Interface --- with gr.Blocks() as demo: gr.Markdown("# Depth-Based vs Segmentation-Based Blur") with gr.Tabs(): with gr.Tab("Depth-Based Blur (Pipeline)"): depth_img = gr.Image(type="pil", label="Upload Image") depth_max_blur = gr.Slider(1.0, 5.0, value=3.0, step=0.1, label="Maximum Blur Radius") depth_scale = gr.Slider(0.1, 1.0, value=0.5, step=0.1, label="Depth Scale Factor") depth_layers = gr.Slider(2, 20, value=8, step=1, label="Number of Layers") depth_out = gr.Image(label="Depth-Based Blurred Image") depth_button = gr.Button("Process Depth Blur") depth_button.click(process_depth_blur_pipeline, inputs=[depth_img, depth_max_blur, depth_scale, depth_layers], outputs=depth_out) with gr.Tab("Segmentation-Based Blur (BEN2)"): seg_img = gr.Image(type="pil", label="Upload Image") seg_blur = gr.Slider(5, 30, value=15, step=1, label="Segmentation Blur Radius") seg_out = gr.Image(label="Segmentation-Based Blurred Image") seg_button = gr.Button("Process Segmentation Blur") seg_button.click(process_segmentation_blur, inputs=[seg_img, seg_blur], outputs=seg_out) if __name__ == "__main__": # Optionally, set share=True to generate a public link. demo.launch(share=True)