Spaces:
Sleeping
Sleeping
José Ángel González
commited on
Commit
·
25d44c1
1
Parent(s):
4b0a0b7
moved to langgraph
Browse files- agents/__init__.py +0 -1
- agents/llm_only.py +0 -25
- agents/react_agent.py +516 -99
- requirements.txt +17 -12
agents/__init__.py
CHANGED
@@ -1,2 +1 @@
|
|
1 |
-
from .llm_only import LLMOnly
|
2 |
from .react_agent import ReactAgent
|
|
|
|
|
1 |
from .react_agent import ReactAgent
|
agents/llm_only.py
DELETED
@@ -1,25 +0,0 @@
|
|
1 |
-
from openai import OpenAI
|
2 |
-
from pydantic import BaseModel
|
3 |
-
|
4 |
-
MODEL = "gpt-4o"
|
5 |
-
SYSTEM_PROMPT = "You are a general AI assistant. I will ask you a question. Report your thoughts, and write your final answer. Your final answer should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string."
|
6 |
-
|
7 |
-
class OutputSchema(BaseModel):
|
8 |
-
thoughts: str
|
9 |
-
final_answer: str
|
10 |
-
|
11 |
-
class LLMOnly:
|
12 |
-
def __init__(self):
|
13 |
-
self.client = OpenAI()
|
14 |
-
|
15 |
-
def __call__(self, question: str) -> str:
|
16 |
-
response = self.client.beta.chat.completions.parse(
|
17 |
-
model=MODEL,
|
18 |
-
messages=[
|
19 |
-
{"role": "system", "content": SYSTEM_PROMPT},
|
20 |
-
{"role": "user", "content": question}
|
21 |
-
],
|
22 |
-
response_format=OutputSchema
|
23 |
-
)
|
24 |
-
answer = response.choices[0].message.parsed
|
25 |
-
return answer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
agents/react_agent.py
CHANGED
@@ -1,132 +1,549 @@
|
|
1 |
-
from
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
import requests
|
13 |
-
from io import BytesIO
|
14 |
import os
|
15 |
-
from
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
|
|
|
|
|
|
18 |
|
19 |
-
#
|
20 |
-
|
21 |
-
|
22 |
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
|
25 |
-
|
|
|
26 |
|
27 |
|
28 |
-
def
|
29 |
-
|
|
|
30 |
|
|
|
|
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
speech_to_text = Tool.from_space(
|
36 |
"maguid28/TranscriptTool",
|
37 |
name="transcription_tool",
|
38 |
description="Transcribe speech to text",
|
39 |
)
|
40 |
-
|
41 |
-
fw.write(content)
|
42 |
-
return speech_to_text("audio.mp3")
|
43 |
|
44 |
|
45 |
-
def
|
46 |
-
|
47 |
-
return response.content
|
48 |
|
|
|
|
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
-
# Configs
|
56 |
-
EXTENSIONS = {
|
57 |
-
".png": {"type": "image", "parser": parse_image},
|
58 |
-
".jpg": {"type": "image", "parser": parse_image},
|
59 |
-
".jpeg": {"type": "image", "parser": parse_image},
|
60 |
-
".xlsx": {"type": "document", "parser": parse_excel},
|
61 |
-
".txt": {"type": "document", "parser": parse_text},
|
62 |
-
".py": {"type": "document", "parser": parse_text},
|
63 |
-
".mp3": {"type": "audio", "parser": parse_mp3},
|
64 |
-
}
|
65 |
-
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
66 |
-
FILE_URL = f"{DEFAULT_API_URL}/files/{{task_id}}"
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
GoogleSearchTool(provider="serper"),
|
71 |
-
PythonInterpreterTool(),
|
72 |
-
VisitWebpageTool(max_output_length=5000),
|
73 |
-
]
|
74 |
-
# DuckDuckGoSearchTool()
|
75 |
-
AUTHORIZED_IMPORTS = ["json", "pandas", "numpy", "datetime", "requests", "bs4"]
|
76 |
|
|
|
|
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
)
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
-
|
96 |
-
|
|
|
|
|
97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
if file_name:
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
-
def steer_system_prompt(self):
|
116 |
-
prev_system_prompt = self.agent.system_prompt
|
117 |
-
prompt_prefix = prev_system_prompt.split("Now Begin!")[0].strip()
|
118 |
-
gaia_answer_rules = """\n\nYour final answer should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string."""
|
119 |
-
gaia_answer_rules += """ You must wrap your final answer in the ```code``` block by using the `final_answer` tool or your mom will die."""
|
120 |
-
system_prompt = prompt_prefix + gaia_answer_rules + "\n\nNow Begin!"
|
121 |
-
self.agent.system_prompt = system_prompt
|
122 |
|
123 |
if __name__ == "__main__":
|
124 |
-
|
125 |
-
|
126 |
-
"
|
|
|
127 |
"Level": "1",
|
128 |
-
"file_name": "
|
129 |
}
|
130 |
-
|
131 |
-
agent
|
132 |
-
response = agent(question4)
|
|
|
1 |
+
from langchain_community.utilities import GoogleSerperAPIWrapper
|
2 |
+
from smolagents import PythonInterpreterTool
|
3 |
+
from langgraph.graph import MessagesState
|
4 |
+
from langchain_openai import ChatOpenAI
|
5 |
+
from langgraph.graph import START, StateGraph
|
6 |
+
from langgraph.prebuilt import tools_condition, ToolNode
|
7 |
+
from langchain_core.messages import SystemMessage
|
8 |
+
from openai import OpenAI
|
9 |
+
from smolagents import Tool
|
10 |
+
from typing import Optional
|
11 |
+
import tempfile
|
|
|
|
|
12 |
import os
|
13 |
+
from urllib.parse import urlparse
|
14 |
+
from base64 import b64encode
|
15 |
+
import requests
|
16 |
+
from bs4 import BeautifulSoup
|
17 |
+
import re
|
18 |
+
import wikipediaapi
|
19 |
+
|
20 |
+
# Configs
|
21 |
+
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
22 |
+
FILE_URL = f"{DEFAULT_API_URL}/files/{{task_id}}"
|
23 |
+
|
24 |
+
|
25 |
+
# Tools
|
26 |
+
def search_tool(query: str) -> str:
|
27 |
+
"""Search in Google and returns an string with title, link, and snippet for the top 10 results.
|
28 |
+
|
29 |
+
Args:
|
30 |
+
query: str
|
31 |
+
|
32 |
+
Returns:
|
33 |
+
Title, link, and snippet for the top 10 results
|
34 |
+
"""
|
35 |
+
searcher = GoogleSerperAPIWrapper(k=10)
|
36 |
+
retries = 3
|
37 |
+
result = ""
|
38 |
+
while retries > 0:
|
39 |
+
try:
|
40 |
+
search_results = searcher.results(query)["organic"]
|
41 |
+
for row in search_results:
|
42 |
+
result += f"Title: {row['title']}\nSnippet: {row['snippet']}\nURL: {row['link']}\n\n"
|
43 |
+
return result
|
44 |
+
except Exception as e:
|
45 |
+
retries -= 1
|
46 |
+
return f"There was an error with Google search: {e}"
|
47 |
+
|
48 |
+
|
49 |
+
def save_file(content: str, filename: Optional[str]) -> str:
|
50 |
+
"""
|
51 |
+
Save content to a temporary file and return the path.
|
52 |
+
Useful for processing files from the GAIA API.
|
53 |
+
|
54 |
+
Args:
|
55 |
+
content: The content to save to the file
|
56 |
+
filename: Optional filename, will generate a random name if not provided
|
57 |
+
|
58 |
+
Returns:
|
59 |
+
Path to the saved file
|
60 |
+
"""
|
61 |
+
temp_dir = tempfile.gettempdir()
|
62 |
+
if filename is None:
|
63 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False)
|
64 |
+
filepath = temp_file.name
|
65 |
+
else:
|
66 |
+
filepath = os.path.join(temp_dir, filename)
|
67 |
+
|
68 |
+
# Write content to the file
|
69 |
+
with open(filepath, "w") as f:
|
70 |
+
f.write(content)
|
71 |
+
|
72 |
+
return f"File saved to {filepath}. You can read this file to process its contents."
|
73 |
+
|
74 |
+
|
75 |
+
def download_file_from_task_id(task_id: str, filename: str) -> str:
|
76 |
+
"""
|
77 |
+
Download a file for a GAIA task using `task_id` if `file_extension` of the task is specified in the prompt.
|
78 |
+
|
79 |
+
Args:
|
80 |
+
task_id: id of the task
|
81 |
+
filename: filename
|
82 |
+
|
83 |
+
Returns:
|
84 |
+
Path to the downloaded file
|
85 |
+
"""
|
86 |
+
return download_file_from_url(FILE_URL.format(task_id=task_id), filename)
|
87 |
+
|
88 |
+
|
89 |
+
def download_file_from_url(url: str, filename: str) -> str:
|
90 |
+
"""
|
91 |
+
Download a file from a URL and save it to a temporary location.
|
92 |
+
|
93 |
+
Args:
|
94 |
+
url: The URL to download from
|
95 |
+
filename: filename
|
96 |
+
|
97 |
+
Returns:
|
98 |
+
Path to the downloaded file
|
99 |
+
"""
|
100 |
+
try:
|
101 |
+
# Parse URL to get filename if not provided
|
102 |
+
if not filename:
|
103 |
+
path = urlparse(url).path
|
104 |
+
filename = os.path.basename(path)
|
105 |
+
if not filename:
|
106 |
+
# Generate a random name if we couldn't extract one
|
107 |
+
import uuid
|
108 |
+
|
109 |
+
filename = f"downloaded_{uuid.uuid4().hex[:8]}"
|
110 |
|
111 |
+
# Create temporary file
|
112 |
+
temp_dir = tempfile.gettempdir()
|
113 |
+
filepath = os.path.join(temp_dir, filename)
|
114 |
|
115 |
+
# Download the file
|
116 |
+
response = requests.get(url, stream=True)
|
117 |
+
response.raise_for_status()
|
118 |
|
119 |
+
# Save the file
|
120 |
+
with open(filepath, "wb") as f:
|
121 |
+
for chunk in response.iter_content(chunk_size=8192):
|
122 |
+
f.write(chunk)
|
123 |
|
124 |
+
return f"File downloaded to {filepath}. You can now process this file."
|
125 |
+
except Exception as e:
|
126 |
+
return f"Error downloading file: {str(e)}"
|
127 |
|
128 |
|
129 |
+
def analyze_csv_file(file_path: str) -> str:
|
130 |
+
"""
|
131 |
+
Analyze a CSV file using pandas and answer a question about it.
|
132 |
|
133 |
+
Args:
|
134 |
+
file_path: Path to the CSV file
|
135 |
|
136 |
+
Returns:
|
137 |
+
Analysis result or error message
|
138 |
+
"""
|
139 |
+
try:
|
140 |
+
import pandas as pd
|
141 |
+
|
142 |
+
# Read the CSV file
|
143 |
+
df = pd.read_csv(file_path)
|
144 |
+
|
145 |
+
# Run various analyses based on the query
|
146 |
+
result = f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
|
147 |
+
result += f"Columns: {', '.join(df.columns)}\n\n"
|
148 |
+
|
149 |
+
# Add summary statistics
|
150 |
+
result += "Summary statistics:\n"
|
151 |
+
result += str(df.describe())
|
152 |
+
result += "\n\n" + df.head(100)
|
153 |
+
return result
|
154 |
+
except ImportError:
|
155 |
+
return "Error: pandas is not installed. Please install it with 'pip install pandas'."
|
156 |
+
except Exception as e:
|
157 |
+
return f"Error analyzing CSV file: {str(e)}"
|
158 |
+
|
159 |
+
|
160 |
+
def analyze_excel_file(file_path: str) -> str:
|
161 |
+
"""
|
162 |
+
Analyze an Excel file using pandas and answer a question about it.
|
163 |
+
|
164 |
+
Args:
|
165 |
+
file_path: Path to the Excel file
|
166 |
+
|
167 |
+
Returns:
|
168 |
+
Analysis result or error message
|
169 |
+
"""
|
170 |
+
try:
|
171 |
+
import pandas as pd
|
172 |
+
|
173 |
+
# Read the Excel file
|
174 |
+
df = pd.read_excel(file_path)
|
175 |
+
print(df)
|
176 |
+
# Run various analyses based on the query
|
177 |
+
result = f"Excel file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
|
178 |
+
result += f"Columns: {', '.join(df.columns)}\n\n"
|
179 |
+
|
180 |
+
# Add summary statistics
|
181 |
+
result += "Summary statistics:\n"
|
182 |
+
result += str(df.describe())
|
183 |
+
result += "\n\n" + str(df.head(100))
|
184 |
+
return result
|
185 |
+
except ImportError:
|
186 |
+
return "Error: pandas and openpyxl are not installed. Please install them with 'pip install pandas openpyxl'."
|
187 |
+
except Exception as e:
|
188 |
+
return f"Error analyzing Excel file: {str(e)}"
|
189 |
+
|
190 |
+
|
191 |
+
def transcribe_speech(filename: str) -> str:
|
192 |
+
"""Transcribe speech to text
|
193 |
+
|
194 |
+
Args:
|
195 |
+
filename: str
|
196 |
+
|
197 |
+
Returns:
|
198 |
+
Transcribed speech as string
|
199 |
+
"""
|
200 |
speech_to_text = Tool.from_space(
|
201 |
"maguid28/TranscriptTool",
|
202 |
name="transcription_tool",
|
203 |
description="Transcribe speech to text",
|
204 |
)
|
205 |
+
return f"The transcription is: {speech_to_text(filename)}"
|
|
|
|
|
206 |
|
207 |
|
208 |
+
def python_interpreter(code: str) -> str:
|
209 |
+
"""A Python interpreter
|
|
|
210 |
|
211 |
+
Args:
|
212 |
+
code: str
|
213 |
|
214 |
+
Returns:
|
215 |
+
The output of the interpreter
|
216 |
+
"""
|
217 |
+
import traceback
|
218 |
|
219 |
+
interpreter = PythonInterpreterTool(
|
220 |
+
authorized_imports=[
|
221 |
+
"json",
|
222 |
+
"pandas",
|
223 |
+
"numpy",
|
224 |
+
"datetime",
|
225 |
+
"requests",
|
226 |
+
"bs4",
|
227 |
+
]
|
228 |
+
)
|
229 |
+
try:
|
230 |
+
return interpreter(code)
|
231 |
+
except Exception as e:
|
232 |
+
return f"There was an exception in the interpreter: {traceback.format_exc()}"
|
233 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
|
235 |
+
def reverse_text(text: str) -> str:
|
236 |
+
"""Reverses a text written from right to left
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
|
238 |
+
Args:
|
239 |
+
text: a reversed text
|
240 |
|
241 |
+
Returns:
|
242 |
+
The text written from left to right
|
243 |
+
"""
|
244 |
+
return f"The reversed text is: {text[::-1]}"
|
245 |
+
|
246 |
+
|
247 |
+
def visit_webpage(url: str) -> str:
|
248 |
+
"""Visits a webpage and returns the content
|
249 |
+
|
250 |
+
Args:
|
251 |
+
url: url of the webpage
|
252 |
+
|
253 |
+
Returns:
|
254 |
+
The webpage content
|
255 |
+
"""
|
256 |
+
retries = 3
|
257 |
+
while retries > 0:
|
258 |
+
try:
|
259 |
+
response = requests.get(
|
260 |
+
url,
|
261 |
+
headers={
|
262 |
+
"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.95 Safari/537.36"
|
263 |
+
},
|
264 |
+
)
|
265 |
+
html = response.content
|
266 |
+
soup = BeautifulSoup(html, "html.parser")
|
267 |
+
for tag in soup.find_all(
|
268 |
+
["header", "footer", "nav", "section", "aside"]
|
269 |
+
):
|
270 |
+
tag.decompose()
|
271 |
+
|
272 |
+
for tag in soup.find_all(["script", "style"]):
|
273 |
+
tag.decompose()
|
274 |
+
|
275 |
+
meaningful_texts = []
|
276 |
+
for tag in soup.find_all(["p", "span", "div"]):
|
277 |
+
text = tag.get_text(separator=" ", strip=True)
|
278 |
+
if text:
|
279 |
+
meaningful_texts.append(text)
|
280 |
+
|
281 |
+
# Join all texts nicely
|
282 |
+
final_text = " ".join(meaningful_texts)
|
283 |
+
|
284 |
+
# Clean multiple spaces
|
285 |
+
final_text = re.sub(r"\s+", " ", final_text)
|
286 |
+
return " ".join(final_text.split()[:3000])
|
287 |
+
|
288 |
+
except Exception as e:
|
289 |
+
retries -= 1
|
290 |
+
|
291 |
+
return f"There was an error visiting the webpage: {e}"
|
292 |
+
|
293 |
+
|
294 |
+
def image_understanding(filename: str, question: str) -> str:
|
295 |
+
"""Answers some question on an image
|
296 |
+
|
297 |
+
Args:
|
298 |
+
filename: the name of the image file
|
299 |
+
question: a question about the image
|
300 |
+
"""
|
301 |
+
client = OpenAI()
|
302 |
+
with open(filename, "rb") as fr:
|
303 |
+
image_bytes = fr.read()
|
304 |
+
b64_image = b64encode(image_bytes).decode("utf-8")
|
305 |
+
response = client.responses.create(
|
306 |
+
model="gpt-4o",
|
307 |
+
input=[
|
308 |
+
{
|
309 |
+
"role": "user",
|
310 |
+
"content": [
|
311 |
+
{"type": "input_text", "text": question},
|
312 |
+
{
|
313 |
+
"type": "input_image",
|
314 |
+
"image_url": f"data:image/png;base64,{b64_image}",
|
315 |
+
},
|
316 |
+
],
|
317 |
+
}
|
318 |
+
],
|
319 |
+
)
|
320 |
+
return response.output[0].content[0].text
|
321 |
+
|
322 |
+
|
323 |
+
def get_wikipedia_article(entity: str) -> str:
|
324 |
+
"""Get the text from the Wikipedia article of an entity.
|
325 |
+
|
326 |
+
Args:
|
327 |
+
entity: the name of the entity. Only for entities existing in Wikipedia, e.g. use "Mercedes Sosa" instead of "Mercedes Sosa discography"
|
328 |
+
|
329 |
+
Returns:
|
330 |
+
The text of the Wikipedia article of the entity
|
331 |
+
"""
|
332 |
+
try:
|
333 |
+
wiki_wiki = wikipediaapi.Wikipedia(
|
334 |
+
user_agent="GAIA Benchmark (jogonba2)",
|
335 |
+
language="en",
|
336 |
+
extract_format=wikipediaapi.ExtractFormat.WIKI,
|
337 |
)
|
338 |
+
p_wiki = wiki_wiki.page(entity)
|
339 |
+
text = p_wiki.text
|
340 |
+
if not text:
|
341 |
+
return f"The article is empty for {entity}. Please, be sure that the entity appears in Wikipedia."
|
342 |
+
return " ".join(text.split(" ")[:3000])
|
343 |
+
except Exception as e:
|
344 |
+
return "There was an exception looking at Wikipedia: {e}"
|
345 |
+
|
346 |
+
|
347 |
+
"""
|
348 |
+
Tool to reinforce the output format.
|
349 |
+
"""
|
350 |
+
|
351 |
+
|
352 |
+
def prepare_final_answer(candidate_answer: str, question: str) -> str:
|
353 |
+
"""Prepare your final answer according to the guidelines in the prompt.
|
354 |
+
This tool must be called always before giving the final anwer.
|
355 |
+
|
356 |
+
Args:
|
357 |
+
candidate_answer: a candidate answer
|
358 |
+
question: the user question to know how to prepare the final answer
|
359 |
+
|
360 |
+
Returns:
|
361 |
+
Your final answer
|
362 |
+
"""
|
363 |
+
client = OpenAI()
|
364 |
+
|
365 |
+
system_prompt = """Your final answer should be a number OR as few words as possible OR a comma separated list of numbers and/or strings.
|
366 |
+
Here are more detailed instructions you must follow to write your final answer according to the provided question:
|
367 |
+
1) If you are asked for a number (how much, how many, ...), you must write a number!. Don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise.
|
368 |
+
2) If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise.
|
369 |
+
3) If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
|
370 |
+
|
371 |
+
If you follow all these instructions perfectly, you will win 1,000,000 dollars, otherwise, your mom will die"""
|
372 |
+
|
373 |
+
user_prompt = f"Question: {question}\nCandidate answer: {candidate_answer}"
|
374 |
+
response = client.responses.create(
|
375 |
+
model="gpt-4o",
|
376 |
+
input=[
|
377 |
+
{
|
378 |
+
"role": "user",
|
379 |
+
"content": [
|
380 |
+
{"type": "input_text", "text": user_prompt},
|
381 |
+
],
|
382 |
+
}
|
383 |
+
],
|
384 |
+
)
|
385 |
+
return response.output[0].content[0].text
|
386 |
+
|
387 |
+
|
388 |
+
# Nodes
|
389 |
+
def assistant(state: MessagesState):
|
390 |
+
return {
|
391 |
+
"messages": [llm_with_tools.invoke([system_prompt] + state["messages"])]
|
392 |
+
}
|
393 |
+
|
394 |
|
395 |
+
# System message
|
396 |
+
system_prompt = SystemMessage(
|
397 |
+
content="""You are a general AI assistant being evaluated in the GAIA Benchmark.
|
398 |
+
I will ask you a question and you must reach your final answer by using a set of tools I provide to you. Please, when you are needed to pass file names to the tools, pass absolute paths.
|
399 |
|
400 |
+
Your final answer should be a number OR as few words as possible OR a comma separated list of numbers and/or strings.
|
401 |
+
Here are more detailed instructions you must follow to write your final answer:
|
402 |
+
1) If you are asked for a number, you must write a number!. Don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise.
|
403 |
+
2) If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise.
|
404 |
+
3) If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
|
405 |
+
|
406 |
+
If you follow all these instructions perfectly, you will win 1,000,000 dollars, otherwise, your mom will die.
|
407 |
+
|
408 |
+
Let's start!
|
409 |
+
"""
|
410 |
+
)
|
411 |
+
|
412 |
+
llm = ChatOpenAI(model="gpt-4o")
|
413 |
+
tools = [
|
414 |
+
search_tool,
|
415 |
+
save_file,
|
416 |
+
download_file_from_task_id,
|
417 |
+
download_file_from_url,
|
418 |
+
analyze_csv_file,
|
419 |
+
analyze_excel_file,
|
420 |
+
transcribe_speech,
|
421 |
+
python_interpreter,
|
422 |
+
visit_webpage,
|
423 |
+
# reverse_text,
|
424 |
+
image_understanding,
|
425 |
+
# get_wikipedia_article
|
426 |
+
# prepare_final_answer,
|
427 |
+
]
|
428 |
+
llm_with_tools = llm.bind_tools(tools)
|
429 |
+
|
430 |
+
# Graph
|
431 |
+
builder = StateGraph(MessagesState)
|
432 |
+
|
433 |
+
# Define nodes: these do the work
|
434 |
+
builder.add_node("assistant", assistant)
|
435 |
+
builder.add_node("tools", ToolNode(tools))
|
436 |
+
|
437 |
+
# Define edges: these determine the control flow
|
438 |
+
builder.add_edge(START, "assistant")
|
439 |
+
builder.add_conditional_edges(
|
440 |
+
"assistant",
|
441 |
+
tools_condition,
|
442 |
+
)
|
443 |
+
builder.add_edge("tools", "assistant")
|
444 |
+
react_graph = builder.compile()
|
445 |
+
|
446 |
+
|
447 |
+
def print_stream(stream):
|
448 |
+
for s in stream:
|
449 |
+
message = s["messages"][-1]
|
450 |
+
if isinstance(message, tuple):
|
451 |
+
print(message)
|
452 |
+
else:
|
453 |
+
message.pretty_print()
|
454 |
+
|
455 |
+
|
456 |
+
class ReactAgent:
|
457 |
+
def __init__(self, verbose: bool = False):
|
458 |
+
self.graph = react_graph
|
459 |
+
self.verbose = verbose
|
460 |
+
|
461 |
+
def __call__(self, task: dict) -> str:
|
462 |
+
question = task["question"]
|
463 |
+
task_id = task["task_id"]
|
464 |
+
file_name = task.get("file_name")
|
465 |
+
file_ext = None
|
466 |
+
user_prompt = question
|
467 |
if file_name:
|
468 |
+
file_ext = os.path.splitext(file_name)[-1].removeprefix(".")
|
469 |
+
user_prompt += f"\nTask ID: {task_id}\nFile extension: {file_ext}"
|
470 |
+
|
471 |
+
user_input = {"messages": [("user", user_prompt)]}
|
472 |
+
if self.verbose:
|
473 |
+
print_stream(self.graph.stream(user_input, stream_mode="values"))
|
474 |
+
else:
|
475 |
+
answer = self.graph.invoke(user_input)["messages"][-1].content
|
476 |
+
return self._clean_answer(answer)
|
477 |
+
|
478 |
+
def _clean_answer(self, answer: any) -> str:
|
479 |
+
"""
|
480 |
+
Taken from `susmitsil`:
|
481 |
+
https://huggingface.co/spaces/susmitsil/FinalAgenticAssessment/blob/main/main_agent.py
|
482 |
+
Clean up the answer to remove common prefixes and formatting
|
483 |
+
that models often add but that can cause exact match failures.
|
484 |
+
|
485 |
+
Args:
|
486 |
+
answer: The raw answer from the model
|
487 |
+
|
488 |
+
Returns:
|
489 |
+
The cleaned answer as a string
|
490 |
+
"""
|
491 |
+
# Convert non-string types to strings
|
492 |
+
if not isinstance(answer, str):
|
493 |
+
# Handle numeric types (float, int)
|
494 |
+
if isinstance(answer, float):
|
495 |
+
# Format floating point numbers properly
|
496 |
+
# Check if it's an integer value in float form (e.g., 12.0)
|
497 |
+
if answer.is_integer():
|
498 |
+
formatted_answer = str(int(answer))
|
499 |
+
else:
|
500 |
+
# For currency values that might need formatting
|
501 |
+
if abs(answer) >= 1000:
|
502 |
+
formatted_answer = f"${answer:,.2f}"
|
503 |
+
else:
|
504 |
+
formatted_answer = str(answer)
|
505 |
+
return formatted_answer
|
506 |
+
elif isinstance(answer, int):
|
507 |
+
return str(answer)
|
508 |
+
else:
|
509 |
+
# For any other type
|
510 |
+
return str(answer)
|
511 |
|
512 |
+
# Now we know answer is a string, so we can safely use string methods
|
513 |
+
# Normalize whitespace
|
514 |
+
answer = answer.strip()
|
515 |
+
|
516 |
+
# Remove common prefixes and formatting that models add
|
517 |
+
prefixes_to_remove = [
|
518 |
+
"The answer is ",
|
519 |
+
"Answer: ",
|
520 |
+
"Final answer: ",
|
521 |
+
"The result is ",
|
522 |
+
"To answer this question: ",
|
523 |
+
"Based on the information provided, ",
|
524 |
+
"According to the information: ",
|
525 |
+
]
|
526 |
+
|
527 |
+
for prefix in prefixes_to_remove:
|
528 |
+
if answer.startswith(prefix):
|
529 |
+
answer = answer[len(prefix) :].strip()
|
530 |
+
|
531 |
+
# Remove quotes if they wrap the entire answer
|
532 |
+
if (answer.startswith('"') and answer.endswith('"')) or (
|
533 |
+
answer.startswith("'") and answer.endswith("'")
|
534 |
+
):
|
535 |
+
answer = answer[1:-1].strip()
|
536 |
+
|
537 |
+
return answer
|
538 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
539 |
|
540 |
if __name__ == "__main__":
|
541 |
+
|
542 |
+
task = {
|
543 |
+
"task_id": "8e867cd7-cff9-4e6c-867a-ff5ddc2550be",
|
544 |
+
"question": "How many studio albums were published by Mercedes Sosa between 2000 and 2009 (included)? You can use the latest 2022 version of english wikipedia.",
|
545 |
"Level": "1",
|
546 |
+
"file_name": "",
|
547 |
}
|
548 |
+
agent = ReactAgent(verbose=False)
|
549 |
+
print(agent(task))
|
|
requirements.txt
CHANGED
@@ -1,13 +1,18 @@
|
|
1 |
gradio
|
2 |
-
|
3 |
-
|
4 |
-
langchain-
|
5 |
-
langchain-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
gradio
|
2 |
+
langchain>=0.1.0
|
3 |
+
langchain-core>=0.1.0
|
4 |
+
langchain-community>=0.0.10
|
5 |
+
langchain-google-genai>=0.0.6
|
6 |
+
google-generativeai>=0.3.0
|
7 |
+
python-dotenv>=1.0.0
|
8 |
+
google-api-python-client>=2.108.0
|
9 |
+
duckduckgo-search>=4.4
|
10 |
+
tiktoken>=0.5.2
|
11 |
+
google-cloud-speech>=2.24.0
|
12 |
+
requests>=2.31.0
|
13 |
+
pydub>=0.25.1
|
14 |
+
yt-dlp>=2023.12.30
|
15 |
+
smolagents>=0.1.3
|
16 |
+
wikipedia>=1.4.0
|
17 |
+
Pillow>=10.2.0
|
18 |
+
wikipedia-api>=0.6.0
|