Spaces:
Runtime error
Runtime error
File size: 16,794 Bytes
b73936d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 |
import abc
from logging import info
from typing import Tuple
import numpy as np
import torch
import xarray as xr
class Transformation(object):
@abc.abstractmethod
def fit(self, data: xr.DataArray):
raise NotImplementedError()
@abc.abstractmethod
def transform(self, data: xr.DataArray):
raise NotImplementedError()
@abc.abstractmethod
def inverse_transform(self, data: xr.DataArray):
raise NotImplementedError()
@abc.abstractmethod
def fit_transform(self, data: xr.DataArray):
return self.fit(data).transform(data)
@abc.abstractmethod
def to_dict(self) -> dict:
raise NotImplementedError()
@staticmethod
@abc.abstractmethod
def from_dict(info: dict):
raise NotImplementedError()
@abc.abstractmethod
def reset(self):
raise NotImplementedError()
class MinMaxScaler(Transformation):
"""_summary_
Minmax scaling on the entire data
"""
def __init__(self, new_min=1, new_max=2):
self._is_fitted = False
self.new_min = new_min
self.new_max = new_max
self._min = None
self._max = None
@property
def min(self) -> float:
return self._min
@property
def max(self) -> float:
return self._max
@property
def is_fitted(self) -> bool:
return self._is_fitted
def fit(self, data: xr.DataArray):
if not self.is_fitted:
self._max = data.max().values
self._min = data.min().values
self._is_fitted = True
else:
info("Already fitted, skipping function.")
return self
def _transform(self, data: xr.DataArray):
return (
((data - self.min) / (self.max - self.min)) * (self.new_max - self.new_min)
) + self.new_min
def transform(self, data: xr.DataArray) -> xr.DataArray:
assert self.min is not None and self.max is not None, "You must run fit first."
data = xr.apply_ufunc(self._transform, data, dask="forbidden")
return data
def fit_transform(self, data):
self.fit(data)
return self.transform(data)
def inverse_transform(self, data):
return data * (self.max - self.min) + self.min
def to_dict(self) -> dict:
out_dict = {
"base": self.__module__,
"class": self.__class__.__name__,
"new_min": str(self.new_min),
"new_max": str(self.new_max),
"min": str(self.min),
"max": str(self.max),
"is_fitted": self.is_fitted,
}
return out_dict
@staticmethod
def from_dict(info: dict):
# with open(yaml_path, 'r') as file:
# data = yaml.load(file, Loader=yaml.SafeLoader)
out = MinMaxScaler(
new_min=np.float32(info["new_min"]), new_max=np.float32(info["new_max"])
)
out._min = np.float32(info["min"])
out._max = np.float32(info["max"])
out._is_fitted = info["is_fitted"]
return out
def reset(self):
self.__init__(self.new_min, self.new_max)
def __str__(self):
return (
f"min: {self.min}, "
f"max: {self.max}, "
f"new_max: {self.new_max}, "
f"new_min: {self.new_min}"
)
class StandardScaler(Transformation):
"""_summary_
Standard scaling on the entire data
"""
def __init__(self, epsilon=1e-8):
self.epsilon = epsilon
self._is_fitted = False
self._mean = None
self._std = None
self._min = None
self._max = None
self._sl_scale_factor = None
@property
def mean(self) -> float:
return self._mean
@property
def std(self) -> float:
return self._std
@property
def min(self) -> float:
return self._min
@property
def max(self) -> float:
return self._max
@property
def sl_scale_factor(self) -> float:
return self._sl_scale_factor
@property
def is_fitted(self) -> bool:
return self._is_fitted
def fit(self, data):
if not self.is_fitted:
self._mean = data.mean().values
self._std = data.std().values
self._min = data.min().values
self._max = data.max().values
self._is_fitted = True
else:
info("Already fitted, skipping function.")
return self
def _transform(self, data: xr.DataArray):
return (data - self.mean) / (self.std + self.epsilon)
def _signum_log_transform(self, data: xr.DataArray):
data = data * self.sl_scale_factor
return np.sign(data) * np.log1p(np.abs(data))
def signum_log_transform(self, data: xr.DataArray):
assert self.mean is not None and self.std is not None, "You must run fit first."
data = xr.apply_ufunc(self._signum_log_transform, data, dask="forbidden")
data = xr.apply_ufunc(self._transform, data, dask="forbidden")
return data
def transform(self, data: xr.DataArray):
assert self.mean is not None and self.std is not None, "You must run fit first."
data = xr.apply_ufunc(self._transform, data, dask="forbidden")
return data
def fit_transform(self, data: xr.DataArray):
self.fit(data)
return self.transform(data)
def inverse_transform(self, data):
if isinstance(data, torch.Tensor):
return data * (
torch.Tensor([self.std]).to(data.device)
+ torch.Tensor([self.epsilon]).to(data.device)
) + torch.Tensor([self.mean]).to(data.device)
else:
return data * (self.std + self.epsilon) + self.mean
def inverse_signum_log_transform(self, data):
if isinstance(data, torch.Tensor):
return (
torch.sign(data)
* torch.expm1(torch.abs(data))
/ torch.Tensor([self.sl_scale_factor]).to(data.device)
)
else:
return np.sign(data) * np.expm1(np.abs(data)) / self.sl_scale_factor
def to_dict(self) -> dict:
return {
"base": self.__module__,
"class": self.__class__.__name__,
"epsilon": str(self.epsilon),
"mean": str(self.mean),
"std": str(self.std),
"is_fitted": self.is_fitted,
"min": str(self.min),
"max": str(self.max),
"sl_scale_factor": str(self.sl_scale_factor),
}
@staticmethod
def from_dict(info: dict):
out = StandardScaler(epsilon=np.float32(info["epsilon"]))
out._mean = np.float32(info["mean"])
out._std = np.float32(info["std"])
out._is_fitted = info["is_fitted"]
out._min = np.float32(info["min"])
out._max = np.float32(info["max"])
out._sl_scale_factor = np.float32(info["sl_scale_factor"])
return out
def reset(self):
self.__init__(self.epsilon)
def __str__(self):
return f"mean: {self.mean}, " f"std: {self.std}, " f"epsilon: {self.epsilon}"
class MaskUnits2D:
"""
Transformation that takes a tuple of numpy tensors and returns a sequence of mask units. These are generally in the form `channel, dim_0, dim_1, dim_2, ...`. The returned data is largely of shape `mask unit sequence, channel, lat, lon`. Masked patches are not returned.
The return values contain sets of indices. The indices indicate which mask units where dropped (masked) or not. The 1D indexing here simply relies on flattening the 2D space of mask units. The class methods `reconstruct` and `reconstruct_batch` show how to re-assemble the entire sequence.
"""
def __init__(
self,
n_lat_mu: int,
n_lon_mu: int,
padding,
seed=None,
mask_ratio_vals: float = 0.5,
mask_ratio_tars: float = 0.0,
n_lats: int = 361,
n_lons: int = 576,
):
self.n_lat_mu = n_lat_mu
self.n_lon_mu = n_lon_mu
self.mask_ratio_vals = mask_ratio_vals
self.mask_ratio_tars = mask_ratio_tars
self.padding = padding
self.n_lats = n_lats + padding[0][0] + padding[0][1]
self.n_lons = n_lons + padding[1][0] + padding[1][1]
if self.n_lats % n_lat_mu != 0:
raise ValueError(
f"Padded latitudes {self.n_lats} are not an integer multiple of the mask unit size {n_lat_mu}."
)
if self.n_lons % n_lon_mu != 0:
raise ValueError(
f"Padded longitudes {self.n_lons} are not an integer multiple of the mask unit size {n_lon_mu}."
)
self.mask_shape = (self.n_lats // self.n_lat_mu, self.n_lons // self.n_lon_mu)
self.rng = np.random.default_rng(seed=seed)
def n_units_masked(self, mask_type="vals"):
if mask_type == "vals":
return int(self.mask_ratio_vals * np.prod(self.mask_shape))
elif mask_type == "tars":
return int(self.mask_ratio_tars * np.prod(self.mask_shape))
else:
raise ValueError(
f"`{mask_type}` not an allowed value for `mask_type`. Use `vals` or `tars`."
)
@staticmethod
def reconstruct(
idx_masked: torch.Tensor,
idx_unmasked: torch.Tensor,
data_masked: torch.Tensor,
data_unmasked: torch.Tensor,
) -> torch.Tensor:
"""
Reconstructs a tensor along the mask unit dimension. Non-batched version.
Args:
idx_masked: Tensor of shape `mask unit sequence`.
idx_unmasked: Tensor of shape `mask unit sequence`.
data_masked: Tensor of shape `mask unit sequence, ...`. Should have same size along mask unit sequence dimension as idx_masked. Dimensions beyond the first two, marked here as ... will typically be `local_sequence, channel` or `channel, lat, lon`. These dimensions should agree with data_unmasked.
data_unmasked: Tensor of shape `mask unit sequence, ...`. Should have same size along mask unit sequence dimension as idx_unmasked. Dimensions beyond the first two, marked here as ... will typically be `local_sequence, channel` or `channel, lat, lon`. These dimensions should agree with data_masked.
Returns:
Tensor of same shape as inputs data_masked and data_unmasked. I.e. `mask unit sequence, ...`.
"""
idx_total = torch.argsort(torch.cat([idx_masked, idx_unmasked], dim=0), dim=0)
idx_total = idx_total.reshape(
*idx_total.shape,
*[1 for _ in range(len(idx_total.shape), len(data_unmasked.shape))],
)
idx_total = idx_total.expand(*idx_total.shape[:1], *data_unmasked.shape[1:])
data = torch.cat([data_masked, data_unmasked], dim=0)
data = torch.gather(data, dim=0, index=idx_total)
return data
@staticmethod
def reconstruct_batch(
idx_masked: torch.Tensor,
idx_unmasked: torch.Tensor,
data_masked: torch.Tensor,
data_unmasked: torch.Tensor,
) -> torch.Tensor:
"""
Reconstructs a tensor along the mask unit dimension. Batched version.
Args:
idx_masked: Tensor of shape `batch, mask unit sequence`.
idx_unmasked: Tensor of shape `batch, mask unit sequence`.
data_masked: Tensor of shape `batch, mask unit sequence, ...`. Should have same size along mask unit sequence dimension as idx_masked. Dimensions beyond the first two, marked here as ... will typically be `local_sequence, channel` or `channel, lat, lon`. These dimensions should agree with data_unmasked.
data_unmasked: Tensor of shape `batch, mask unit sequence, ...`. Should have same size along mask unit sequence dimension as idx_unmasked. Dimensions beyond the first two, marked here as ... will typically be `local_sequence, channel` or `channel, lat, lon`. These dimensions should agree with data_masked.
Returns:
Tensor of same shape as inputs data_masked and data_unmasked. I.e. `batch, mask unit sequence, ...`.
"""
idx_total = torch.argsort(torch.cat([idx_masked, idx_unmasked], dim=1), dim=1)
idx_total = idx_total.reshape(
*idx_total.shape,
*[1 for _ in range(len(idx_total.shape), len(data_unmasked.shape))],
)
idx_total = idx_total.expand(*idx_total.shape[:2], *data_unmasked.shape[2:])
data = torch.cat([data_masked, data_unmasked], dim=1)
data = torch.gather(data, dim=1, index=idx_total)
return data
def __call__(self, data: Tuple[np.array]) -> Tuple[torch.Tensor]:
"""
Args:
data: Tuple of numpy tensors. These are interpreted as `(sur_static, ulv_static, sur_vals, ulv_vals, sur_tars, ulv_tars)`.
Returns:
Tuple of torch tensors. If the target is unmasked (`mask_ratio_tars` is zero), the tuple contains
`(static, indices_masked_vals, indices_unmaked_vals, vals, tars)`. When targets are masked as well, we are dealing with
`(static, indices_masked_vals, indices_unmaked_vals, vals, indices_masked_tars, indices_unmasked_tars, tars)`.
Their shapes are as follows:
static: mask unit sequence, channel, lat, lon
indices_masked_vals: mask unit sequence
indices_unmaked_vals: mask unit sequence
vals: mask unit sequence, channel, lat, lon
tars: mask unit sequence, channel, lat, lon
"""
sur_static, ulv_static, sur_vals, ulv_vals, sur_tars, ulv_tars = data
sur_vals, ulv_vals = np.squeeze(sur_vals, axis=1), np.squeeze(ulv_vals, axis=1)
sur_tars, ulv_tars = np.squeeze(sur_tars, axis=1), np.squeeze(ulv_tars, axis=1)
vals = np.concatenate(
[
sur_vals,
ulv_vals.reshape(
ulv_vals.shape[0] * ulv_vals.shape[1], *ulv_vals.shape[-2:]
),
],
axis=0,
)
tars = np.concatenate(
[
sur_tars,
ulv_tars.reshape(
ulv_tars.shape[0] * ulv_tars.shape[1], *ulv_tars.shape[-2:]
),
],
axis=0,
)
padding = ((0, 0), *self.padding)
static = np.pad(sur_static, padding)
vals = np.pad(vals, padding)
tars = np.pad(tars, padding)
static = static.reshape(
static.shape[0],
static.shape[-2] // self.n_lat_mu,
self.n_lat_mu,
static.shape[-1] // self.n_lon_mu,
self.n_lon_mu,
).transpose(1, 3, 0, 2, 4)
vals = vals.reshape(
vals.shape[0],
vals.shape[-2] // self.n_lat_mu,
self.n_lat_mu,
vals.shape[-1] // self.n_lon_mu,
self.n_lon_mu,
).transpose(1, 3, 0, 2, 4)
tars = tars.reshape(
tars.shape[0],
tars.shape[-2] // self.n_lat_mu,
self.n_lat_mu,
tars.shape[-1] // self.n_lon_mu,
self.n_lon_mu,
).transpose(1, 3, 0, 2, 4)
maskable_indices = np.arange(np.prod(self.mask_shape))
maskable_indices = self.rng.permutation(maskable_indices)
indices_masked_vals = maskable_indices[: self.n_units_masked()]
indices_unmasked_vals = maskable_indices[self.n_units_masked() :]
vals = vals.reshape(-1, *vals.shape[2:])[indices_unmasked_vals, :, :, :]
if self.mask_ratio_tars > 0.0:
maskable_indices = np.arange(np.prod(self.mask_shape))
maskable_indices = self.rng.permutation(maskable_indices)
indices_masked_tars = maskable_indices[: self.n_units_masked("tars")]
indices_unmasked_tars = maskable_indices[self.n_units_masked("tars") :]
tars = tars.reshape(-1, *tars.shape[2:])[indices_unmasked_tars, :, :, :]
return_value = (
torch.from_numpy(static).flatten(0, 1),
torch.from_numpy(indices_masked_vals),
torch.from_numpy(indices_unmasked_vals),
torch.from_numpy(vals),
torch.from_numpy(indices_masked_tars),
torch.from_numpy(indices_unmasked_tars),
torch.from_numpy(tars),
)
return return_value
else:
return_value = (
torch.from_numpy(static).flatten(0, 1),
torch.from_numpy(indices_masked_vals),
torch.from_numpy(indices_unmasked_vals),
torch.from_numpy(vals),
torch.from_numpy(tars).flatten(0, 1),
)
return return_value
|