Spaces:
Runtime error
Runtime error
File size: 15,867 Bytes
b73936d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 |
"""
Perceiver code is based on Aurora: https://github.com/microsoft/aurora/blob/main/aurora/model/perceiver.py
Some conventions for notation:
B - Batch
T - Time
H - Height (pixel space)
W - Width (pixel space)
HT - Height (token space)
WT - Width (token space)
ST - Sequence (token space)
C - Input channels
D - Model (embedding) dimension
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from timm.models.layers import trunc_normal_
class PatchEmbed3D(nn.Module):
"""Timeseries Image to Patch Embedding"""
def __init__(
self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, time_dim=2
):
super().__init__()
self.img_size = img_size
self.patch_size = patch_size
self.embed_dim = embed_dim
self.time_dim = time_dim
self.proj = nn.Conv2d(
in_chans * time_dim,
embed_dim,
kernel_size=(patch_size, patch_size),
stride=(patch_size, patch_size),
)
def forward(self, x):
"""
Args:
x: Tensor of shape (B, C, T, H, W)
Returns:
Tensor of shape (B, ST, D)
"""
B, C, T, H, W = x.shape
x = self.proj(x.flatten(1, 2)) # (B, C, T, H, W) -> (B, D, HT, WT)
x = rearrange(x, "B D HT WT -> B (HT WT) D") # (B, N, D)
return x
class LinearEmbedding(nn.Module):
def __init__(
self,
img_size=224,
patch_size=16,
in_chans=3,
time_dim=2,
embed_dim=768,
drop_rate=0.0,
):
super().__init__()
self.num_patches = (img_size // patch_size) ** 2
self.patch_embed = PatchEmbed3D(
img_size=img_size,
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim,
time_dim=time_dim,
)
self._generate_position_encoding(img_size, patch_size, embed_dim)
self.pos_drop = nn.Dropout(p=drop_rate)
def _generate_position_encoding(self, img_size, patch_size, embed_dim):
"""
Generates a positional encoding signal for the model. The generated
positional encoding signal is stored as a buffer (`self.fourier_signal`).
Args:
img_size (int): The size of the input image.
patch_size (int): The size of each patch in the image.
embed_dim (int): The embedding dimension of the model.
Returns:
None.
"""
# Generate signal of shape (C, H, W)
x = torch.linspace(0.0, 1.0, img_size // patch_size)
y = torch.linspace(0.0, 1.0, img_size // patch_size)
x, y = torch.meshgrid(x, y, indexing="xy")
fourier_signal = []
frequencies = torch.linspace(1, (img_size // patch_size) / 2.0, embed_dim // 4)
for f in frequencies:
fourier_signal.extend(
[
torch.cos(2.0 * torch.pi * f * x),
torch.sin(2.0 * torch.pi * f * x),
torch.cos(2.0 * torch.pi * f * y),
torch.sin(2.0 * torch.pi * f * y),
]
)
fourier_signal = torch.stack(fourier_signal, dim=2)
fourier_signal = rearrange(fourier_signal, "h w c -> 1 (h w) c")
self.register_buffer("pos_embed", fourier_signal)
def forward(self, x, dt):
"""
Args:
x: Tensor of shape (B, C, T, H, W).
dt: Tensor of shape (B, T). However it is not used.
Returns:
Tensor of shape (B, ST, D)
"""
x = self.patch_embed(x)
x = x + self.pos_embed
x = self.pos_drop(x)
return x
class LinearDecoder(nn.Module):
def __init__(
self,
patch_size: int,
out_chans: int,
embed_dim: int,
):
"""
Args:
patch_size: patch size
in_chans: number of iput channels
embed_dim: embedding dimension
"""
super().__init__()
self.unembed = nn.Sequential(
nn.Conv2d(
in_channels=embed_dim,
out_channels=(patch_size**2) * out_chans,
kernel_size=1,
),
nn.PixelShuffle(patch_size),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Args:
x: Tensor of shape (B, L, D). For ensembles, we have implicitly B = (B E).
Returns:
Tensor of shape (B C H W).
Here
- C equals num_queries
- H == W == sqrt(L) x patch_size
"""
# Reshape the tokens to 2d token space: (B, C, H_token, W_token)
_, L, _ = x.shape
H_token = W_token = int(L**0.5)
x = rearrange(x, "B (H W) D -> B D H W", H=H_token, W=W_token)
# Unembed the tokens. Convolution + pixel shuffle.
x = self.unembed(x)
return x
class MLP(nn.Module):
"""A simple one-hidden-layer MLP."""
def __init__(self, dim: int, hidden_features: int, dropout: float = 0.0) -> None:
"""Initialise.
Args:
dim (int): Input dimensionality.
hidden_features (int): Width of the hidden layer.
dropout (float, optional): Drop-out rate. Defaults to no drop-out.
"""
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, hidden_features),
nn.GELU(),
nn.Linear(hidden_features, dim),
nn.Dropout(dropout),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Run the MLP."""
return self.net(x)
class PerceiverAttention(nn.Module):
"""Cross attention module from the Perceiver architecture."""
def __init__(
self,
latent_dim: int,
context_dim: int,
head_dim: int = 64,
num_heads: int = 8,
) -> None:
"""Initialise.
Args:
latent_dim (int): Dimensionality of the latent features given as input.
context_dim (int): Dimensionality of the context features also given as input.
head_dim (int): Attention head dimensionality.
num_heads (int): Number of heads.
"""
super().__init__()
self.num_heads = num_heads
self.head_dim = head_dim
self.inner_dim = head_dim * num_heads
self.to_q = nn.Linear(latent_dim, self.inner_dim, bias=False)
self.to_kv = nn.Linear(context_dim, self.inner_dim * 2, bias=False)
self.to_out = nn.Linear(self.inner_dim, latent_dim, bias=False)
def forward(self, latents: torch.Tensor, x: torch.Tensor) -> torch.Tensor:
"""Run the cross-attention module.
Args:
latents (:class:`torch.Tensor`): Latent features of shape `(B, L1, Latent_D)`
where typically `L1 < L2` and `Latent_D <= Context_D`. `Latent_D` is equal to
`self.latent_dim`.
x (:class:`torch.Tensor`): Context features of shape `(B, L2, Context_D)`.
Returns:
:class:`torch.Tensor`: Latent values of shape `(B, L1, Latent_D)`.
"""
h = self.num_heads
q = self.to_q(latents) # (B, L1, D2) to (B, L1, D)
k, v = self.to_kv(x).chunk(2, dim=-1) # (B, L2, D1) to twice (B, L2, D)
q, k, v = map(lambda t: rearrange(t, "b l (h d) -> b h l d", h=h), (q, k, v))
out = F.scaled_dot_product_attention(q, k, v)
out = rearrange(out, "B H L1 D -> B L1 (H D)") # (B, L1, D)
return self.to_out(out) # (B, L1, Latent_D)
class PerceiverResampler(nn.Module):
"""Perceiver Resampler module from the Flamingo paper."""
def __init__(
self,
latent_dim: int,
context_dim: int,
depth: int = 1,
head_dim: int = 64,
num_heads: int = 16,
mlp_ratio: float = 4.0,
drop: float = 0.0,
residual_latent: bool = True,
ln_eps: float = 1e-5,
) -> None:
"""Initialise.
Args:
latent_dim (int): Dimensionality of the latent features given as input.
context_dim (int): Dimensionality of the context features also given as input.
depth (int, optional): Number of attention layers.
head_dim (int, optional): Attention head dimensionality. Defaults to `64`.
num_heads (int, optional): Number of heads. Defaults to `16`
mlp_ratio (float, optional): Rimensionality of the hidden layer divided by that of the
input for all MLPs. Defaults to `4.0`.
drop (float, optional): Drop-out rate. Defaults to no drop-out.
residual_latent (bool, optional): Use residual attention w.r.t. the latent features.
Defaults to `True`.
ln_eps (float, optional): Epsilon in the layer normalisation layers. Defaults to
`1e-5`.
"""
super().__init__()
self.residual_latent = residual_latent
self.layers = nn.ModuleList([])
mlp_hidden_dim = int(latent_dim * mlp_ratio)
for _ in range(depth):
self.layers.append(
nn.ModuleList(
[
PerceiverAttention(
latent_dim=latent_dim,
context_dim=context_dim,
head_dim=head_dim,
num_heads=num_heads,
),
MLP(
dim=latent_dim, hidden_features=mlp_hidden_dim, dropout=drop
),
nn.LayerNorm(latent_dim, eps=ln_eps),
nn.LayerNorm(latent_dim, eps=ln_eps),
]
)
)
def forward(self, latents: torch.Tensor, x: torch.Tensor) -> torch.Tensor:
"""Run the module.
Args:
latents (:class:`torch.Tensor`): Latent features of shape `(B, L1, D1)`.
x (:class:`torch.Tensor`): Context features of shape `(B, L2, D1)`.
Returns:
torch.Tensor: Latent features of shape `(B, L1, D1)`.
"""
for attn, ff, ln1, ln2 in self.layers:
# We use post-res-norm like in Swin v2 and most Transformer architectures these days.
# This empirically works better than the pre-norm used in the original Perceiver.
attn_out = ln1(attn(latents, x))
# HuggingFace suggests using non-residual attention in Perceiver might work better when
# the semantics of the query and the output are different:
#
# https://github.com/huggingface/transformers/blob/v4.35.2/src/transformers/models/perceiver/modeling_perceiver.py#L398
#
latents = attn_out + latents if self.residual_latent else attn_out
latents = ln2(ff(latents)) + latents
return latents
class PerceiverChannelEmbedding(nn.Module):
def __init__(
self,
in_chans: int,
img_size: int,
patch_size: int,
time_dim: int,
num_queries: int,
embed_dim: int,
drop_rate: float,
):
super().__init__()
if embed_dim % 2 != 0:
raise ValueError(
f"Temporal embeddings require `embed_dim` to be even. Currently we have {embed_dim}."
)
self.num_patches = (img_size // patch_size) ** 2
self.num_queries = num_queries
self.embed_dim = embed_dim
self.proj = nn.Conv2d(
in_channels=in_chans * time_dim,
out_channels=in_chans * embed_dim,
kernel_size=patch_size,
stride=patch_size,
groups=in_chans,
)
self.pos_embed = nn.Parameter(torch.zeros(1, embed_dim, self.num_patches))
trunc_normal_(self.pos_embed, std=0.02)
self.latent_queries = nn.Parameter(torch.zeros(1, num_queries, embed_dim))
trunc_normal_(self.latent_queries, std=0.02)
self.perceiver = PerceiverResampler(
latent_dim=embed_dim,
context_dim=embed_dim,
depth=1,
head_dim=embed_dim // 16,
num_heads=16,
mlp_ratio=4.0,
drop=0.0,
residual_latent=False,
ln_eps=1e-5,
)
self.latent_aggregation = nn.Linear(num_queries * embed_dim, embed_dim)
self.pos_drop = nn.Dropout(p=drop_rate)
def forward(self, x, dt):
"""
Args:
x: Tensor of shape (B, C, T, H, W)
dt: Tensor of shape (B, T) identifying time deltas.
Returns:
Tensor of shape (B, ST, D)
"""
B, C, T, H, W = x.shape
x = rearrange(x, "B C T H W -> B (C T) H W")
x = self.proj(x) # B (C T) H W -> B (C D) HT WT
x = x.flatten(2, 3) # B (C D) ST
ST = x.shape[2]
assert ST == self.num_patches
x = rearrange(x, "B (C D) ST -> (B C) D ST", B=B, ST=ST, C=C, D=self.embed_dim)
x = x + self.pos_embed
x = rearrange(x, "(B C) D ST -> (B ST) C D", B=B, ST=ST, C=C, D=self.embed_dim)
# ((B ST) NQ D), ((B ST) C D) -> ((B ST) NQ D)
x = self.perceiver(self.latent_queries.expand(B * ST, -1, -1), x)
x = rearrange(
x,
"(B ST) NQ D -> B ST (NQ D)",
B=B,
ST=self.num_patches,
NQ=self.num_queries,
D=self.embed_dim,
)
x = self.latent_aggregation(x) # B ST (NQ D) -> B ST D'
assert x.shape[1] == self.num_patches
assert x.shape[2] == self.embed_dim
x = self.pos_drop(x)
return x
class PerceiverDecoder(nn.Module):
def __init__(
self,
embed_dim: int,
patch_size: int,
out_chans: int,
):
"""
Args:
embed_dim: embedding dimension
patch_size: patch size
out_chans: number of output channels. This determines the number of latent queries.
drop_rate: dropout rate
"""
super().__init__()
self.embed_dim = embed_dim
self.patch_size = patch_size
self.out_chans = out_chans
self.latent_queries = nn.Parameter(torch.zeros(1, out_chans, embed_dim))
trunc_normal_(self.latent_queries, std=0.02)
self.perceiver = PerceiverResampler(
latent_dim=embed_dim,
context_dim=embed_dim,
depth=1,
head_dim=embed_dim // 16,
num_heads=16,
mlp_ratio=4.0,
drop=0.0,
residual_latent=False,
ln_eps=1e-5,
)
self.proj = nn.Conv2d(
in_channels=out_chans * embed_dim,
out_channels=out_chans * patch_size**2,
kernel_size=1,
padding=0,
groups=out_chans,
)
self.pixel_shuffle = nn.PixelShuffle(patch_size)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Args:
x: Tensor of shape (B, L, D) For ensembles, we have implicitly B = (B E).
Returns:
Tensor of shape (B C H W).
Here
- C equals out_chans
- H == W == sqrt(L) x patch_size
"""
B, L, D = x.shape
H_token = W_token = int(L**0.5)
x = rearrange(x, "B L D -> (B L) 1 D")
# (B L) 1 D -> (B L) C D
x = self.perceiver(self.latent_queries.expand(B * L, -1, -1), x)
x = rearrange(x, "(B H W) C D -> B (C D) H W", H=H_token, W=W_token)
# B (C D) H_token W_token -> B (C patch_size patch_size) H_token W_token
x = self.proj(x)
# B (C patch_size patch_size) H_token W_token -> B C H W
x = self.pixel_shuffle(x)
return x
|