Spaces:
Runtime error
Runtime error
File size: 14,484 Bytes
b73936d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
# Copyright (c) 2021 NVIDIA CORPORATION. Licensed under the MIT license.
# Written by Chen Zhu during an internship at NVIDIA, [email protected]
import math
from torch import nn
import torch
from timm.models.layers import trunc_normal_
import torch.nn.functional as F
class AttentionLS(nn.Module):
"""Implementation for long-short term attention.
Flexible options for using window attention, global token and dynamic projection.
Args:
dim: input and output feature dimension.
num_heads: number of attention heads.
qkv_bias: whether to use bias for the projection of query, key and values.
qk_scale: scale factor on query and key for numerical stability.
By default, set to square root of head dimensions.
attn_drop: dropout probability for attention matrix.
proj_drop: dropout probability for the final output.
rpe: whether to use relative position encoding.
nglo: number of global tokens (e.g., CLS).
"""
def __init__(
self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.0,
proj_drop=0.0,
rpe=False,
nglo=1,
dp_rank=2,
w=2,
):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = qk_scale or head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.nglo = nglo
# Equals to segment size (w) in the paper.
self.window_size = w
# Equals to r in the paper.
self.dp_rank = dp_rank
if self.dp_rank > 0:
self.to_dynamic_projection = nn.Linear(dim, dp_rank * num_heads)
# The LN of DualLN corresponding to dynamic projection
self.dual_ln_dp = nn.LayerNorm(dim)
# The LN of DualLN corresponding to all the tokens
self.dual_ln_full = nn.LayerNorm(dim)
# Adapted from ViL: https://github.com/microsoft/vision-longformer/blob/main/src/models/layers/longformer2d.py#L55-L100
# We only add RPE to window attention.
# Unnecessary to add bias for global tokens, since DualLN already adds biases.
self.rpe = rpe
if rpe:
# handle the boarder conditions...
w_pad = int(w * 0.5)
self.local_relative_position_bias_table = nn.Parameter(
torch.zeros(2 * (w + w_pad - 1) * (2 * w_pad + w + 1) + 1, num_heads)
)
trunc_normal_(self.local_relative_position_bias_table, std=0.02)
# get pair-wise relative position index
coords_h = torch.arange(-w_pad, w_pad + w)
coords_w = torch.arange(-w_pad, w_pad + w)
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, 2w, 2w
coords = (
coords.view(2, (w + w_pad * 2) ** 2).transpose(0, 1).unsqueeze(0)
) # 1, 4w**2, 2
q_coords_hw = torch.arange(0, w)
q_coords = torch.stack(
torch.meshgrid([q_coords_hw, q_coords_hw])
) # 2, w, w
q_coords = q_coords.view(2, w**2).transpose(0, 1).unsqueeze(1) # w**2, 1, 2
relative_coords = q_coords - coords
relative_coords += w_pad + w - 1 # shift to start from 0
relative_coords[:, :, 0] *= 2 * w_pad + w
relative_position_index = relative_coords.sum(-1) # w^2, 4w^2
self.register_buffer("relative_position_index", relative_position_index)
def forward(self, x, nx=None, ny=None):
B, N, C = x.shape
N_feat = N - self.nglo
self.img_size = int(math.sqrt(N)) if nx is None else nx
qkv = self.qkv(x)
# query, key, value
q, k, v = qkv.chunk(3, dim=2)
q = q.mul(self.scale)
# Layer norm on the projected keys and values
k = self.dual_ln_full(k)
v = self.dual_ln_full(v)
# output size: bsz x n_heads x seqlen x d
if self.nglo > 0:
q_cls, q = q[:, : self.nglo], q[:, self.nglo :]
k_cls, k = k[:, : self.nglo], k[:, self.nglo :]
v_cls, v = v[:, : self.nglo], v[:, self.nglo :]
q_cls = q_cls.reshape(
B, self.nglo, self.num_heads, C // self.num_heads
).transpose(1, 2)
k_cls = k_cls.reshape(
B, self.nglo, self.num_heads, C // self.num_heads
).transpose(1, 2)
v_cls = v_cls.reshape(
B, self.nglo, self.num_heads, C // self.num_heads
).transpose(1, 2)
q = q.reshape(B, N_feat, self.num_heads, C // self.num_heads).transpose(1, 2)
k = k.reshape(B, N_feat, self.num_heads, C // self.num_heads).transpose(1, 2)
v = v.reshape(B, N_feat, self.num_heads, C // self.num_heads).transpose(1, 2)
# Long-range Attention (Dynamic Projection)
if self.dp_rank > 0:
# b x h x r x (l w)
# Compute the projection matrix (P_i in the paper)
c_scores = (
self.to_dynamic_projection(x[:, self.nglo :])
.transpose(1, 2)
.contiguous()
.view(B, self.num_heads, self.dp_rank, -1)
)
# c_scores = c_scores.softmax(dim=-1, dtype=torch.float32).to(x)
c_scores = c_scores.softmax(dim=-1).to(
x
) # Changed when experimenting with mixed precision (Johannes S.)
# b x h x r x d
k_lms = c_scores.matmul(k)
k_lms = k_lms.transpose(1, 2).contiguous().view(B, self.dp_rank, -1)
k_lms = (
self.dual_ln_dp(k_lms)
.view(B, self.dp_rank, self.num_heads, -1)
.contiguous()
.permute(0, 2, 3, 1)
)
# b x h x (lw) x r
dots_all = q.matmul(k_lms)
if self.window_size > 0:
# Switch the order of dimensions if using window attention.
dots_all = self.group_dots(dots_all)
else:
dots_all = None
# Short-term Attention (Window Attention)
# In our window attention, each token attends to at most (4w^2) tokens.
if self.window_size > 0:
dots_win = self.compute_window_scores(q, k)
w2 = int(self.window_size * self.window_size)
if self.rpe:
w_pad = int(0.5 * self.window_size)
local_relative_position_bias = self.local_relative_position_bias_table[
self.relative_position_index.view(-1)
].view(
1, w2, (w_pad * 2 + self.window_size) ** 2, -1
) # w^2, kv_nums,H
local_relative_position_bias = (
local_relative_position_bias.permute(0, 3, 1, 2)
.expand(B, -1, -1, -1)
.unsqueeze(2)
.unsqueeze(2)
)
dots_win += local_relative_position_bias
if dots_all is None:
dots_all = dots_win
else:
dots_all = torch.cat([dots_all, dots_win], dim=-1)
# Global token.
if self.nglo > 0:
# and compute the scores of queries on CLS
dots_q_cls = q.matmul(k_cls.transpose(-1, -2))
if self.window_size > 0:
dots_q_cls = self.group_dots(dots_q_cls)
dots_all = torch.cat([dots_all, dots_q_cls], dim=-1)
# attn = dots_all.softmax(dim=-1, dtype=torch.float32).to(x)
attn = dots_all.softmax(dim=-1).to(
x
) # Changed when experimenting with mixed precision (Johannes S.)
attn = self.attn_drop(attn)
out = 0
if self.window_size > 0:
offset = max(0, self.dp_rank)
kv_group_size = self.window_size
total_win_size = max(1, self.window_size // 2) * 2 + kv_group_size
attn_win = attn[:, :, :, :, :, offset : offset + total_win_size**2]
out += self.compute_window_pv(attn_win, v)
attn = self.ungroup_dots(attn)
# attn will be b x h x lw x n_k from now on
if self.dp_rank > 0:
attn_lm = attn[:, :, :, : self.dp_rank]
v_lms = (
# c_scores.matmul(v.float())
c_scores.matmul(
v
) # Changed when experimenting with mixed precision (Johannes S.)
.to(v)
.transpose(1, 2)
.contiguous()
.view(B, self.dp_rank, -1)
)
v_lms = (
self.dual_ln_dp(v_lms)
.view(B, self.dp_rank, self.num_heads, -1)
.contiguous()
.transpose(1, 2)
)
out += attn_lm.matmul(v_lms)
if self.nglo > 0:
attn_cls = attn[:, :, :, -self.nglo :]
out += attn_cls.matmul(
v_cls
) # Changed. Was `.mul` instead of `.matmul`. (JWS)
# b x h x 1 x lw
cls_inner = q_cls.matmul(k_cls.transpose(-1, -2))
cls_dots = q_cls.matmul(
k.transpose(-1, -2)
) # Changed. Was `out` instead of `k`. (JWS)
cls_dots = torch.cat([cls_inner, cls_dots], dim=-1)
# cls_dots = cls_dots.softmax(dim=-1, dtype=torch.float32).to(x)
cls_dots = cls_dots.softmax(dim=-1).to(
x
) # Changed when experimenting with mixed precision (Johannes S.)
cls_next = cls_dots[:, :, :, self.nglo :].matmul(
v
) # the post_cls variant # Changed. Was `out` instead of `v`. (JWS)
cls_next += cls_dots[:, :, :, : self.nglo].matmul(v_cls)
out = torch.cat([cls_next, out], dim=2)
out = out.transpose(1, 2).contiguous().view(B, N, -1)
# x = (attn @ v).transpose(1, 2).reshape(B, N, C)
out = self.proj(out)
out = self.proj_drop(out)
return out
def compute_window_scores(self, q, k):
"""Compute the inner products for the window attention.
Frist, divide the query into non-overlapping windows.
Then, use torch.as_trided (implemented in self.get_overlapping_tiles) to create a view of the keys
that corresponds to the windows with at most 2x memory overhead.
Finally, compute the inner product.
"""
# q: b h (l w) d
b, h, _, d = q.shape
side_size = max(self.window_size // 2, 1)
# q_group_size: segment size
kv_width = 2 * side_size + self.window_size # assuming q_stride=1
q_n_group = self.img_size // self.window_size
q_tiles = q.reshape(
b, h, q_n_group, self.window_size, q_n_group, self.window_size, d
).permute(0, 1, 2, 4, 3, 5, 6)
# q_tiles: b x h x n_group x n_group x w^2 x d
q_tiles = q_tiles.contiguous().view(b, h, q_n_group, q_n_group, -1, d)
# k_tiles: b x h x n_group x n_group x 9w^2 x d
k_tiles = (
self.get_overlapping_tiles(k)
.contiguous()
.view(b, h, q_n_group, q_n_group, -1, d)
)
# dot_tiles: b x h x n_group x n_group x w^2 x 9w^2
dot_tiles = q_tiles.matmul(k_tiles.transpose(-1, -2))
# fill "-inf" into the zero-padding parts
dot_tiles = dot_tiles.view(b, h, q_n_group, q_n_group, -1, kv_width, kv_width)
dot_tiles[:, :, 0, :, :, :side_size].fill_(float("-inf"))
dot_tiles[:, :, -1, :, :, -side_size:].fill_(float("-inf"))
dot_tiles[:, :, :, 0, :, :, :side_size].fill_(float("-inf"))
dot_tiles[:, :, :, -1, :, :, -side_size:].fill_(float("-inf"))
dot_tiles = dot_tiles.view(b, h, q_n_group, q_n_group, -1, kv_width**2)
return dot_tiles
def get_overlapping_tiles(self, x):
"""Get overlapping tiles in the 2D spatial domain, ensuring each query computes correlation with all neighbors"""
# x: b h (l w) d
b, h, _, d = x.shape
side_size = max(self.window_size // 2, 1)
total_size = 2 * side_size + self.window_size
kv_group_size = self.window_size
kv_width = self.img_size
x = x.view(b, h, kv_width, kv_width, d)
x = F.pad(x, [0, 0, side_size, side_size, side_size, side_size], value=0)
out_shape = [
b,
h,
kv_width // kv_group_size,
kv_width // kv_group_size,
total_size,
total_size,
d,
]
in_stride = x.stride()
out_stride = [
in_stride[0],
in_stride[1],
in_stride[2] * kv_group_size,
in_stride[3] * kv_group_size,
in_stride[2],
in_stride[3],
in_stride[4],
]
# note we ignored the boundary here
return x.as_strided(size=out_shape, stride=out_stride)
def compute_window_pv(self, attn, v):
"""Compute the inner product of attention matrix and the values for the window attention."""
b, h, n_group, _, w2, n_k = attn.shape
d = v.shape[-1]
v_tiles = (
self.get_overlapping_tiles(v)
.contiguous()
.view(b, h, n_group, n_group, -1, d)
)
# b x h x n_group x n_group x w^2 x d
pv = attn.matmul(v_tiles)
# return: b x h x (lw) x d
ret = self.ungroup_dots(pv)
return ret
def group_dots(self, dots):
b, h = dots.shape[:2]
n_group = self.img_size // self.window_size
dots = dots.reshape(
b, h, n_group, self.window_size, n_group, self.window_size, -1
).permute(0, 1, 2, 4, 3, 5, 6)
dots = dots.contiguous().view(
b, h, n_group, n_group, self.window_size * self.window_size, -1
)
return dots
def ungroup_dots(self, dots):
b, h, n_group, _, _, n_keys = dots.shape
dots = dots.reshape(
b, h, n_group, n_group, self.window_size, self.window_size, -1
).permute(0, 1, 2, 4, 3, 5, 6)
dots = dots.contiguous().view(b, h, -1, n_keys)
return dots
|