File size: 10,414 Bytes
b73936d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import os
from argparse import Namespace

import yaml


class DataConfig:
    def __init__(
        self,
        train_data_path: str,
        valid_data_path: str,
        batch_size: int,
        num_data_workers: int,
        prefetch_factor: int,
        time_delta_input_minutes: list[int],
        n_input_timestamps: int | None = None,
        pooling: int | None = None,
        random_vert_flip: bool = False,
        **kwargs,
    ):
        self.__dict__.update(kwargs)

        self.train_data_path = train_data_path
        self.valid_data_path = valid_data_path
        self.batch_size = batch_size
        self.num_data_workers = num_data_workers
        self.prefetch_factor = prefetch_factor
        self.time_delta_input_minutes = sorted(time_delta_input_minutes)
        self.n_input_timestamps = n_input_timestamps
        self.pooling = pooling
        self.random_vert_flip = random_vert_flip

        if self.n_input_timestamps is None:
            self.n_input_timestamps = len(self.time_delta_input_minutes)

        assert (
            self.n_input_timestamps > 0
        ), "Number of input timestamps must be greater than 0."
        assert self.n_input_timestamps <= len(self.time_delta_input_minutes), (
            f"Cannot sample {self.n_input_timestamps} from list of "
            f"{self.time_delta_input_minutes} input timestamps."
        )

    def to_dict(self):
        return self.__dict__

    @staticmethod
    def from_argparse(args: Namespace):
        return DataConfig(**args.__dict__)

    def __str__(self):
        return (
            f"Training index: {self.train_data_path}, "
            f"Validation index: {self.valid_data_path}, "
        )

    def __repr__(self):
        return (
            f"Training index: {self.train_data_path}, "
            f"Validation index: {self.valid_data_path}, "
        )


class ModelConfig:
    def __init__(
        self,
        # enc_num_layers: int,
        # enc_num_heads: int,
        # enc_embed_size: int,
        # dec_num_layers: int,
        # dec_num_heads: int,
        # dec_embed_size: int,
        # mask_ratio: float,
        **kwargs,
    ):
        self.__dict__.update(kwargs)

        # self.enc_num_layers = enc_num_layers
        # self.enc_num_heads = enc_num_heads
        # self.enc_embed_size = enc_embed_size
        # self.dec_num_layers = dec_num_layers
        # self.dec_num_heads = dec_num_heads
        # self.dec_embed_size = dec_embed_size
        # self.mlp_ratio = 0.0
        # self.mask_ratio = mask_ratio

        self.__dict__.update(kwargs)

    def to_dict(self):
        return self.__dict__

    @staticmethod
    def from_argparse(args: Namespace):
        return ModelConfig(**args.__dict__)

    @property
    def encoder_d_ff(self):
        return int(self.enc_embed_size * self.mlp_ratio)

    @property
    def decoder_d_ff(self):
        return int(self.dec_embed_size * self.mlp_ratio)

    def __str__(self):
        return (
            f"Input channels: {self.model.in_channels}, "
            f"Encoder (L, H, E): {[self.enc_num_layers, self.enc_num_heads, self.enc_embed_size]}, "
            f"Decoder (L, H, E): {[self.dec_num_layers, self.dec_num_heads, self.dec_embed_size]}"
        )

    def __repr__(self):
        return (
            f"Input channels: {self.model.in_channels}, "
            f"Encoder (L, H, E): {[self.enc_num_layers, self.enc_num_heads, self.enc_embed_size]}, "
            f"Decoder (L, H, E): {[self.dec_num_layers, self.dec_num_heads, self.dec_embed_size]}"
        )


class OptimizerConfig:
    def __init__(
        self,
        warm_up_steps: int,
        max_epochs: int,
        learning_rate: float,
        min_lr: float,
    ):
        self.warm_up_steps = warm_up_steps
        self.max_epochs = max_epochs
        self.learning_rate = learning_rate
        self.min_lr = min_lr

    def to_dict(self):
        return self.__dict__

    @staticmethod
    def from_argparse(args: Namespace):
        return ModelConfig(**args.__dict__)

    def __str__(self):
        return (
            f"Epochs: {self.max_epochs}, "
            f"LR: {[self.learning_rate, self.min_lr]}, "
            f"Warm up: {self.warm_up_steps},"
        )

    def __repr__(self):
        return (
            f"Epochs: {self.max_epochs}, "
            f"LR: {[self.learning_rate, self.min_lr]}, "
            f"Warm up: {self.warm_up_steps},"
        )


class ExperimentConfig:
    def __init__(
        self,
        job_id: str,
        data_config: DataConfig,
        model_config: ModelConfig,
        optimizer_config: OptimizerConfig,
        path_experiment: str,
        parallelism: str,
        from_checkpoint: str | None = None,
        **kwargs,
    ):
        # additional experiment parameters used in downstream tasks
        self.__dict__.update(kwargs)

        self.job_id = job_id
        self.data = data_config
        self.model = model_config
        self.optimizer = optimizer_config
        self.path_experiment = path_experiment
        self.from_checkpoint = from_checkpoint
        self.parallelism = parallelism

        assert self.model.in_channels == len(self.data.channels), (
            f"Number of model input channels ({self.model.in_channels}) must be "
            f"equal to number of input variables ({len(self.data.channels)})."
        )
        if self.model.time_embedding["type"] == "linear":
            assert (
                self.model.time_embedding["time_dim"] == self.data.n_input_timestamps
            ), "Time dimension of linear embedding must be equal to number of input timestamps."
        if self.rollout_steps > 0:
            assert self.data.n_input_timestamps == len(
                self.data.time_delta_input_minutes
            ), "Rollout does not support randomly sampled input timestamps."

        metrics_channels = []
        for field1, value1 in self.metrics["train_metrics_config"].items():
            for field2, value2 in self.metrics["train_metrics_config"][field1].items():
                if field2 == "metrics":
                    for metric_definition in value2:
                        split_metric_definition = metric_definition.split(":")
                        channels = (
                            split_metric_definition[2]
                            if len(split_metric_definition) > 2
                            else None
                        )
                        if channels is not None:
                            metrics_channels = metrics_channels + channels.split("...")

        for field1, value1 in self.metrics["validation_metrics_config"].items():
            for field2, value2 in self.metrics["validation_metrics_config"][
                field1
            ].items():
                if field2 == "metrics":
                    for metric_definition in value2:
                        split_metric_definition = metric_definition.split(":")
                        channels = (
                            split_metric_definition[2]
                            if len(split_metric_definition) > 2
                            else None
                        )
                        if channels is not None:
                            metrics_channels = metrics_channels + channels.replace(
                                "...", "&"
                            ).split("&")

        assert set(metrics_channels).issubset(self.data.channels), (
            f"{set(metrics_channels).difference(self.data.channels)} "
            f"not part of data input channels."
        )

        assert self.parallelism in [
            "ddp",
            "fsdp",
        ], 'Valid choices for `parallelism` are "ddp" and "fsdp".'

    @property
    def path_checkpoint(self) -> str:
        if self.path_experiment == "":
            return os.path.join(self.path_weights, "train", "checkpoint.pt")
        else:
            return os.path.join(
                os.path.dirname(self.path_experiment),
                "weights",
                "train",
                "checkpoint.pt",
            )

    @property
    def path_weights(self) -> str:
        return os.path.join(self.path_experiment, self.make_suffix_path(), "weights")

    @property
    def path_states(self) -> str:
        return os.path.join(self.path_experiment, self.make_suffix_path(), "states")

    def to_dict(self):
        d = self.__dict__.copy()
        d["model"] = self.model.to_dict()
        d["data"] = self.data.to_dict()

        return d

    @staticmethod
    def from_argparse(args: Namespace):
        return ExperimentConfig(
            data_config=DataConfig.from_argparse(args),
            model_config=ModelConfig.from_argparse(args),
            optimizer_config=OptimizerConfig.from_argparse(args),
            **args.__dict__,
        )

    @staticmethod
    def from_dict(params: dict):
        return ExperimentConfig(
            data_config=DataConfig(**params["data"]),
            model_config=ModelConfig(**params["model"]),
            optimizer_config=OptimizerConfig(**params["optimizer"]),
            **params,
        )

    def make_folder_name(self) -> str:
        param_folder = "wpt-c1-s1"
        return param_folder

    def make_suffix_path(self) -> str:
        return os.path.join(self.job_id)

    def __str__(self):
        return (
            f"ID: {self.job_id}, "
            f"Epochs: {self.optimizer.max_epochs}, "
            f"Batch size: {self.data.batch_size}, "
            f"LR: {[self.optimizer.learning_rate, self.optimizer.min_lr]}, "
            f"Warm up: {self.optimizer.warm_up_steps},"
            f"DL workers: {self.data.num_data_workers},"
            f"Parallelism: {self.parallelism}"
        )

    def __repr__(self):
        return (
            f"ID: {self.job_id}, "
            f"Epochs: {self.optimizer.max_epochs}, "
            f"Batch size: {self.data.batch_size}, "
            f"LR: {[self.optimizer.learning_rate, self.optimizer.min_lr]}, "
            f"Warm up: {self.optimizer.warm_up_steps},"
            f"DL workers: {self.data.num_data_workers},"
            f"Parallelism: {self.parallelism}"
        )


def get_config(
    config_path: str,
) -> ExperimentConfig:
    cfg = yaml.safe_load(open(config_path, "r"))
    cfg["data"]["scalers"] = yaml.safe_load(open(cfg["data"]["scalers_path"], "r"))
    return ExperimentConfig.from_dict(params=cfg)