File size: 10,179 Bytes
b73936d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import os
import random
from datetime import timedelta

import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.nn as nn
from torch.distributed import checkpoint as dist_checkpoint
from torch.distributed import fsdp

import functools
import itertools

from torch.utils.data.distributed import DistributedSampler
from torch.utils.data import Dataset
from typing import Any, Dict, Optional

from surya.utils.schemas import TrainState


def init_dist(device: str, rank: int, world_size: int):
    torch.distributed.init_process_group(
        device,
        init_method="env://",
        world_size=world_size,
        rank=rank,
        timeout=timedelta(minutes=60),
    )


def init_ddp(use_gpu: bool):
    local_rank = int(os.environ["LOCAL_RANK"])
    rank = int(os.environ["RANK"])
    world_size = int(os.environ["WORLD_SIZE"])

    if use_gpu:
        assert (
            torch.cuda.is_available()
        ), "GPU requested but none was found in the system."

    if use_gpu:
        init_dist("nccl", rank, world_size)
        torch.cuda.set_device(local_rank)
        os.environ["TORCH_SHOW_CPP_STACKTRACES"] = str(1)
        os.environ["TORCH_NCCL_ASYNC_ERROR_HANDLING"] = str(1)
        os.environ["TORCH_DISTRIBUTED_DEBUG"] = "DETAIL"
        cudnn.benchmark = True
    else:
        init_dist("gloo", rank, world_size)
    return local_rank, rank


def set_global_seed(rank):
    random.seed(42 + rank)
    torch.cuda.manual_seed(42 + rank)
    torch.manual_seed(42 + rank)
    np.random.seed(42 + rank)


def is_dist_avail_and_initialized():
    if not dist.is_available():
        return False
    if not dist.is_initialized():
        return False
    return True


def get_world_size():
    if not is_dist_avail_and_initialized():
        return 1
    return dist.get_world_size()


def get_rank():
    if not is_dist_avail_and_initialized():
        return 0
    return dist.get_rank()


def is_main_process():
    return get_rank() == 0


# def save_model_singular(model, *args, **kwargs):
#     """Stream all model parameters to rank 0 on the CPU, then pass all
#     other given arguments to `torch.save` to save the model, but only on
#     the root process.
#     """
#     save_policy = fsdp.FullStateDictConfig(
#         offload_to_cpu=True, rank0_only=True)
#     with fsdp.FullyShardedDataParallel.state_dict_type(
#             model,
#             fsdp.StateDictType.FULL_STATE_DICT,
#             save_policy,
#     ):
#         cpu_state = model.state_dict()
#     # We do *not* want to write to the same location with multiple
#     # processes at the same time.
#     if is_root_process():
#         torch.save(cpu_state, *args, **kwargs)


def save_model(model, save_dir):
    """Obtain sharded model parameters from the GPU, then save the model
    as a distributed checkpoint to the given directory. Saving a
    distributed checkpoint means that the checkpoint will be split into
    individual files, one for each process.
    """
    state_dict_config = fsdp.ShardedStateDictConfig(offload_to_cpu=False)
    with fsdp.FullyShardedDataParallel.state_dict_type(
        model,
        fsdp.StateDictType.SHARDED_STATE_DICT,
        state_dict_config,
    ):
        cp_state_dict = {"model": model.state_dict()}
    dist_checkpoint.save_state_dict(
        cp_state_dict,
        dist_checkpoint.FileSystemWriter(save_dir),
    )


def load_model(model, load_dir):
    """Set the given model's state dictionary in-place from the given
    distributed checkpoint directory.
    """
    state_dict_config = fsdp.ShardedStateDictConfig(offload_to_cpu=False)
    with fsdp.FullyShardedDataParallel.state_dict_type(
        model,
        fsdp.StateDictType.SHARDED_STATE_DICT,
        state_dict_config,
    ):
        cp_state_dict = {"model": model.state_dict()}
    dist_checkpoint.load_state_dict(
        cp_state_dict,
        dist_checkpoint.FileSystemReader(load_dir),
    )
    model.load_state_dict(cp_state_dict["model"])


@functools.lru_cache(maxsize=None)
def is_root_process():
    """Return whether this process is the root process."""
    return torch.distributed.get_rank() == 0


# The reason we define this is that `torch.distributed` does not
# implement it; for the global rank, there's
# `torch.distributed.get_rank()`.
@functools.lru_cache(maxsize=None)
def get_local_rank():
    """Return the local rank of this process."""
    return int(os.getenv("LOCAL_RANK"))


def print0(*args, **kwargs):
    """Print something only on the root process."""
    if (not dist.is_initialized()) or is_root_process():
        print(*args, **kwargs)


def save_model_singular(model, save_path, parallelism, *args, **kwargs):
    """Stream all model parameters to rank 0 on the CPU, then pass all
    other given arguments to `torch.save` to save the model, but only on
    the root process.
    """

    match parallelism:
        case "fsdp":
            save_policy = fsdp.FullStateDictConfig(offload_to_cpu=True, rank0_only=True)
            with fsdp.FullyShardedDataParallel.state_dict_type(
                model,
                fsdp.StateDictType.FULL_STATE_DICT,
                save_policy,
            ):
                cpu_state = model.state_dict()
            # We do *not* want to write to the same location with multiple
            # processes at the same time.
            if is_main_process():
                if not os.path.exists(os.path.dirname(save_path)):
                    os.makedirs(os.path.dirname(save_path), exist_ok=True)
                torch.save(obj=cpu_state, f=save_path, *args, **kwargs)

        case "ddp":
            if is_main_process():
                torch.save(obj=model.module.state_dict(), f=save_path, *args, **kwargs)
            dist.barrier()
        case _:
            raise ValueError(
                f'`parallelism` should be one of "ddp" and "fsdp". Got {parallelism}.'
            )


def save_optim_singular(
    model: nn.Module,
    optimizer: torch.optim.Optimizer,
    save_path: str,
    parallelism: str = "fsdp",
):
    match parallelism:
        case "fsdp":
            optim_state_dict_config = fsdp.FullOptimStateDictConfig(
                offload_to_cpu=True, rank0_only=True
            )

            with fsdp.FullyShardedDataParallel.state_dict_type(
                model,
                fsdp.StateDictType.FULL_STATE_DICT,
                optim_state_dict_config=optim_state_dict_config,
            ):
                optim_state_dict = fsdp.FullyShardedDataParallel.optim_state_dict(
                    model, optimizer
                )

                if is_main_process():
                    if not os.path.exists(os.path.dirname(save_path)):
                        os.makedirs(os.path.dirname(save_path), exist_ok=True)
                    checkpoint = {
                        "optimizer_state_dict": optim_state_dict,
                    }
                    torch.save(checkpoint, f=save_path)
        case "ddp":
            if is_main_process():
                optim_state_dict = optimizer.state_dict()
                if not os.path.exists(os.path.dirname(save_path)):
                    os.makedirs(os.path.dirname(save_path), exist_ok=True)
                torch.save(obj=optim_state_dict, f=save_path)
            dist.barrier()
        case _:
            raise ValueError(
                f'`parallelism` should be one of "ddp" and "fsdp". Got {parallelism}.'
            )


def collect_optim_singular(
    model: nn.Module, optimizer: torch.optim.Optimizer, parallelism: str = "fsdp"
) -> dict:
    optim_state_dict = {}
    match parallelism:
        case "fsdp":
            optim_state_dict_config = fsdp.FullOptimStateDictConfig(
                offload_to_cpu=True, rank0_only=True
            )

            with fsdp.FullyShardedDataParallel.state_dict_type(
                model,
                fsdp.StateDictType.FULL_STATE_DICT,
                optim_state_dict_config=optim_state_dict_config,
            ):
                optim_state_dict = fsdp.FullyShardedDataParallel.optim_state_dict(
                    model, optimizer
                )

        case "ddp":
            if is_main_process():
                optim_state_dict = optimizer.state_dict()
            dist.barrier()
        case _:
            raise ValueError(
                f'`parallelism` should be one of "ddp" and "fsdp". Got {parallelism}.'
            )

    return optim_state_dict


def save_state_singular(states: TrainState, save_path, *args, **kwargs):
    """Stream all model parameters to rank 0 on the CPU, then pass all
    other given arguments to `torch.save` to save paramters, but only on
    the root process.
    """
    if is_main_process():
        if not os.path.exists(os.path.dirname(save_path)):
            os.makedirs(os.path.dirname(save_path), exist_ok=True)
        torch.save(obj=states, f=save_path, *args, **kwargs)
    dist.barrier()


class StatefulDistributedSampler(DistributedSampler):
    _YIELDED = "yielded"

    def __init__(
        self,
        dataset: Dataset,
        num_replicas: Optional[int] = None,
        rank: Optional[int] = None,
        shuffle: bool = True,
        seed: int = 0,
        drop_last: bool = False,
    ) -> None:
        super().__init__(dataset, num_replicas, rank, shuffle, seed, drop_last)
        self.yielded = 0
        self.next_yielded = None

    def __iter__(self):
        self.yielded = 0
        if self.next_yielded is not None:
            self.yielded = self.next_yielded
            self.next_yielded = None
        it = super().__iter__()
        for idx in itertools.islice(it, self.yielded, None):
            self.yielded += 1
            yield idx

    def state_dict(self) -> Dict[str, Any]:
        return {self._YIELDED: self.yielded}

    def load_state_dict(self, state_dict: Dict[str, Any]) -> None:
        if self._YIELDED not in state_dict:
            raise ValueError("Invalid state_dict")
        if state_dict[self._YIELDED] < 0:
            raise ValueError("Cannot load state_dict with negative yielded value")
        self.next_yielded = state_dict[self._YIELDED]