johannesschmude's picture
Initial commit
b73936d
raw
history blame
12.5 kB
import torch
from einops import rearrange
from torch import nn
import numpy as np
from .spectformer import SpectFormer, BlockSpectralGating, BlockAttention
from .embedding import (
LinearEmbedding,
PatchEmbed3D,
PerceiverChannelEmbedding,
LinearDecoder,
PerceiverDecoder,
)
from .flow import HelioFlowModel
class HelioSpectFormer(nn.Module):
"""
A note on the ensemble capability:
Ensembles of size E are generated by setting `ensemble=E`. In this case, the forward
pass generates ensemble members after tokenization by increasing the batch dimension
B to B x E. Noise is injected in the `self.backbone` Specformer blocks. After the
backbone, ensemble members ride along implicitly in the batch dimension. (This is
mainly through the `self.unembed` pass.) An explicit ensemble dimension is only
generated at the end.
"""
def __init__(
self,
img_size: int,
patch_size: int,
in_chans: int,
embed_dim: int,
time_embedding: dict,
depth: int,
n_spectral_blocks: int,
num_heads: int,
mlp_ratio: float,
drop_rate: float,
window_size: int,
dp_rank: int,
learned_flow: bool = False,
use_latitude_in_learned_flow: bool = False,
init_weights: bool = False,
checkpoint_layers: list[int] | None = None,
rpe: bool = False,
ensemble: int | None = None,
finetune: bool = True,
nglo: int = 0,
dtype: torch.dtype | None = None,
) -> None:
"""
Args:
img_size: input image size
patch_size: patch size
in_chans: number of iput channels
embed_dim: embeddin dimension
time_embedding: dictionary to configure temporal embedding:
`type` (str, required): indicates embedding type. `linear`, `perceiver`.
`time_dim` (int): indicates length of time dimension. required for linear embedding.
`n_queries` (int): indicates number of perceiver queries. required for perceiver.
depth: number of transformer blocks
n_spectral_blocks: number of spectral gating blocks
num_heads: Number of transformer heads
mlp_ratio: MLP ratio for transformer blocks
drop_rate: dropout rate
window_size: window size for long/short attention
dp_rank: dp rank for long/short attention
learned_flow: if true, combine learned flow model with spectformer
use_latitude_in_learned_flow: use latitudes in learned flow
init_weights: use optimized weight initialization
checkpoint_layers: indicate which layers to use for checkpointing
rpe: Use relative position encoding in Long-Short attention blocks.
ensemble: Integer indicating ensemble size or None for deterministic model.
finetune: Indicates whether to train from scrach or fine-tune the model. If set to `True`, the final output layers are removed.
nglo: Number of (additional) global tokens.
dtype: A torch data type. Not used and added only for compatibility with the remainder of the codebase.
"""
super().__init__()
self.learned_flow = learned_flow
self.patch_size = patch_size
self.embed_dim = embed_dim
self.in_chans = in_chans
self.time_embedding = time_embedding
self.ensemble = ensemble
self.finetune = finetune
self.nglo = nglo
if learned_flow:
self.learned_flow_model = HelioFlowModel(
img_size=(img_size, img_size),
use_latitude_in_learned_flow=use_latitude_in_learned_flow,
)
match time_embedding["type"]:
case "linear":
self.time_dim = time_embedding["time_dim"]
if learned_flow:
self.time_dim += 1
self.embedding = LinearEmbedding(
img_size, patch_size, in_chans, self.time_dim, embed_dim, drop_rate
)
if not self.finetune:
self.unembed = LinearDecoder(
patch_size=patch_size, out_chans=in_chans, embed_dim=embed_dim
)
case "perceiver":
self.embedding = PerceiverChannelEmbedding(
in_chans=in_chans,
img_size=img_size,
patch_size=patch_size,
time_dim=time_embedding["time_dim"],
num_queries=time_embedding["n_queries"],
embed_dim=embed_dim,
drop_rate=drop_rate,
)
if not self.finetune:
self.unembed = PerceiverDecoder(
embed_dim=embed_dim,
patch_size=patch_size,
out_chans=in_chans,
)
case _:
raise NotImplementedError(
f'Embedding {time_embedding["type"]} has not been implemented.'
)
if isinstance(depth, list):
raise NotImplementedError(
"Multi scale models are no longer supported. Depth should be a single integer."
)
self.backbone = SpectFormer(
grid_size=img_size // patch_size,
embed_dim=embed_dim,
depth=depth,
n_spectral_blocks=n_spectral_blocks,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
drop_rate=drop_rate,
window_size=window_size,
dp_rank=dp_rank,
checkpoint_layers=checkpoint_layers,
rpe=rpe,
ensemble=ensemble,
nglo=nglo,
)
if init_weights:
self.apply(self._init_weights)
# @staticmethod
# def _checkpoint_wrapper(
# model: nn.Module, data: tuple[Tensor, Tensor | None]
# ) -> Tensor:
# return checkpoint(model, data, use_reentrant=False)
def _init_weights(self, module):
if self.time_embedding["type"] == "linear":
# sampling_step * embed_dim = patch_size**2 * in_chans * time_dim
sampling_step = int(
np.sqrt(
(self.patch_size**2 * self.in_chans * self.time_dim)
/ self.embed_dim
)
)
else:
sampling_step = int(
np.sqrt((self.patch_size**2 * self.in_chans) / self.embed_dim)
)
if isinstance(module, PatchEmbed3D):
torch.nn.init.zeros_(module.proj.weight)
c_out = 0
w_pool = 1.0 / sampling_step
for k in range(self.in_chans * self.time_dim):
for i in range(0, self.patch_size, sampling_step):
for j in range(0, self.patch_size, sampling_step):
module.proj.weight.data[
c_out, k, i : i + sampling_step, j : j + sampling_step
] = w_pool
c_out += 1
if module.proj.bias is not None:
module.proj.bias.data.zero_()
if isinstance(module, BlockSpectralGating):
for m in [
module.mlp.fc1,
module.mlp.fc2,
]:
# m.weight.data.normal_(mean=0.0, std=0.01)
# torch.nn.init.eye_(m.weight)
torch.nn.init.eye_(m.weight)
if m.bias is not None:
m.bias.data.zero_()
if isinstance(module, BlockAttention):
for m in [
module.mlp.fc1,
module.mlp.fc2,
]:
# torch.nn.init.eye_(m.weight)
torch.nn.init.zeros_(m.weight)
if m.bias is not None:
m.bias.data.zero_()
for m in [
module.attn.qkv,
module.attn.proj,
module.attn.to_dynamic_projection,
]:
# m.weight.data.normal_(mean=0.0, std=0.01)
# torch.nn.init.eye_(m.weight)
torch.nn.init.zeros_(m.weight)
if m.bias is not None:
m.bias.data.zero_()
if isinstance(module, torch.nn.Sequential):
if isinstance(module[1], torch.nn.PixelShuffle):
# torch.nn.init.eye_(module[0].weight.data[:,:,0,0])
torch.nn.init.zeros_(module[0].weight)
if self.time_embedding["type"] == "linear":
c_out = 0
for k in range(1, self.in_chans + 1):
for i in range(
self.patch_size**2 // (self.patch_size * sampling_step)
):
for j in range(self.patch_size):
module[0].weight.data[
c_out : c_out + sampling_step,
j + (k * self.time_dim - 1) * self.patch_size,
] = 1.0
c_out += sampling_step
else:
c_out = 0
for k in range(2 * self.in_chans):
# l = 0
for l_feat in range(self.backbone.embed_dim):
module[0].weight.data[c_out, l_feat] = 1.0
c_out += 1
if module[0].bias is not None:
module[0].bias.data.zero_()
def forward(self, batch):
"""
Args:
batch: Dictionary containing keys `ts` and `time_delta_input`.
Their values are tensors with shapes as follows.
ts: B, C, T, H, W
time_delta_input: B, T
Returns:
Tensor fo shape (B, C, H, W) for deterministic or (B, E, C, H, W) for ensemble forecasts.
"""
x = batch["ts"]
dt = batch["time_delta_input"]
B, C, T, H, W = x.shape
if self.learned_flow:
y_hat_flow = self.learned_flow_model(batch) # B, C, H, W
if any(
[param.requires_grad for param in self.learned_flow_model.parameters()]
):
return y_hat_flow
else:
x = torch.concat((x, y_hat_flow.unsqueeze(2)), dim=2) # B, C, T+1, H, W
if self.time_embedding["type"] == "perceiver":
dt = torch.cat((dt, batch["lead_time_delta"].reshape(-1, 1)), dim=1)
# embed the data
tokens = self.embedding(x, dt)
# copy tokens in case of ensemble forecast
if self.ensemble:
# B L D -> (B E) L D == BE L D
tokens = torch.repeat_interleave(tokens, repeats=self.ensemble, dim=0)
# pass the time series through the encoder
tokens = self.backbone(tokens)
if self.finetune:
return tokens
# Unembed the tokens
# BE L D -> BE C H W
forecast_hat = self.unembed(tokens)
assert forecast_hat.shape == (
B * self.ensemble if self.ensemble else B,
C,
H,
W,
), f"forecast_hat has shape {forecast_hat.shape} yet expected {(B*self.ensemble if self.ensemble else B, C, H, W)}."
if self.learned_flow:
assert y_hat_flow.shape == (
B,
C,
H,
W,
), f"y_hat_flow has shape {y_hat_flow.shape} yet expected {(B, C, H, W)}."
if self.ensemble:
y_hat_flow = torch.repeat_interleave(
y_hat_flow, repeats=self.ensemble, dim=0
)
assert y_hat_flow.shape == forecast_hat.shape
forecast_hat = forecast_hat + y_hat_flow
assert forecast_hat.shape == (
B * self.ensemble if self.ensemble else B,
C,
H,
W,
), f"forecast_hat has shape {forecast_hat.shape} yet expected {(B*self.ensemble if self.ensemble else B, C, H, W)}."
if self.ensemble:
forecast_hat = rearrange(
forecast_hat, "(B E) C H W -> B E C H W", B=B, E=self.ensemble
)
return forecast_hat