Spaces:
Runtime error
Runtime error
import numbers | |
from logging import Logger | |
from time import time | |
import numpy as np | |
import torch | |
from numpy.lib.stride_tricks import as_strided | |
from torch.utils.data import DataLoader | |
def view_as_windows(arr_in: np.ndarray, window_shape, step=1) -> np.ndarray: | |
"""Rolling window view of the input n-dimensional array. | |
Windows are overlapping views of the input array, with adjacent windows | |
shifted by a single row or column (or an index of a higher dimension). | |
Ref: https://github.com/scikit-image/scikit-image/blob/5e74a4a3a5149a8a14566b81a32bb15499aa3857/skimage/util/shape.py#L97-L247 | |
Parameters | |
""" | |
# -- basic checks on arguments | |
if not isinstance(arr_in, np.ndarray): | |
raise TypeError("`arr_in` must be a numpy ndarray") | |
ndim = arr_in.ndim | |
if isinstance(window_shape, numbers.Number): | |
window_shape = (window_shape,) * ndim | |
if not (len(window_shape) == ndim): | |
raise ValueError("`window_shape` is incompatible with `arr_in.shape`") | |
if isinstance(step, numbers.Number): | |
if step < 1: | |
raise ValueError("`step` must be >= 1") | |
step = (step,) * ndim | |
if len(step) != ndim: | |
raise ValueError("`step` is incompatible with `arr_in.shape`") | |
arr_shape = np.array(arr_in.shape) | |
window_shape = np.array(window_shape, dtype=arr_shape.dtype) | |
if ((arr_shape - window_shape) < 0).any(): | |
raise ValueError("`window_shape` is too large") | |
if ((window_shape - 1) < 0).any(): | |
raise ValueError("`window_shape` is too small") | |
# -- build rolling window view | |
slices = tuple(slice(None, None, st) for st in step) | |
window_strides = np.array(arr_in.strides) | |
indexing_strides = arr_in[slices].strides | |
win_indices_shape = ( | |
(np.array(arr_in.shape) - np.array(window_shape)) // np.array(step) | |
) + 1 | |
new_shape = tuple(list(win_indices_shape) + list(window_shape)) | |
strides = tuple(list(indexing_strides) + list(window_strides)) | |
arr_out = as_strided(arr_in, shape=new_shape, strides=strides) | |
return arr_out | |
def class_from_name(module_name: str, class_name: str) -> object: | |
# load the module, will raise ImportError if module cannot be loaded | |
m = __import__(module_name, globals(), locals(), [class_name]) | |
# get the class, will raise AttributeError if class cannot be found | |
c = getattr(m, class_name) | |
return c | |
def throughput(data_loader: DataLoader, model: torch.nn.Module, logger: Logger): | |
model.eval() | |
for idx, (images, _) in enumerate(data_loader): | |
images = images.cuda(non_blocking=True) | |
batch_size = images.shape[0] | |
for i in range(50): | |
model(images) | |
torch.cuda.synchronize() | |
logger.info("throughput averaged with 30 times") | |
tic1 = time() | |
for i in range(30): | |
model(images) | |
torch.cuda.synchronize() | |
tic2 = time() | |
logger.info( | |
f"batch_size {batch_size} throughput {30 * batch_size / (tic2 - tic1)}" | |
) | |