johannesschmude's picture
Initial commit
b73936d
import numbers
from logging import Logger
from time import time
import numpy as np
import torch
from numpy.lib.stride_tricks import as_strided
from torch.utils.data import DataLoader
def view_as_windows(arr_in: np.ndarray, window_shape, step=1) -> np.ndarray:
"""Rolling window view of the input n-dimensional array.
Windows are overlapping views of the input array, with adjacent windows
shifted by a single row or column (or an index of a higher dimension).
Ref: https://github.com/scikit-image/scikit-image/blob/5e74a4a3a5149a8a14566b81a32bb15499aa3857/skimage/util/shape.py#L97-L247
Parameters
"""
# -- basic checks on arguments
if not isinstance(arr_in, np.ndarray):
raise TypeError("`arr_in` must be a numpy ndarray")
ndim = arr_in.ndim
if isinstance(window_shape, numbers.Number):
window_shape = (window_shape,) * ndim
if not (len(window_shape) == ndim):
raise ValueError("`window_shape` is incompatible with `arr_in.shape`")
if isinstance(step, numbers.Number):
if step < 1:
raise ValueError("`step` must be >= 1")
step = (step,) * ndim
if len(step) != ndim:
raise ValueError("`step` is incompatible with `arr_in.shape`")
arr_shape = np.array(arr_in.shape)
window_shape = np.array(window_shape, dtype=arr_shape.dtype)
if ((arr_shape - window_shape) < 0).any():
raise ValueError("`window_shape` is too large")
if ((window_shape - 1) < 0).any():
raise ValueError("`window_shape` is too small")
# -- build rolling window view
slices = tuple(slice(None, None, st) for st in step)
window_strides = np.array(arr_in.strides)
indexing_strides = arr_in[slices].strides
win_indices_shape = (
(np.array(arr_in.shape) - np.array(window_shape)) // np.array(step)
) + 1
new_shape = tuple(list(win_indices_shape) + list(window_shape))
strides = tuple(list(indexing_strides) + list(window_strides))
arr_out = as_strided(arr_in, shape=new_shape, strides=strides)
return arr_out
def class_from_name(module_name: str, class_name: str) -> object:
# load the module, will raise ImportError if module cannot be loaded
m = __import__(module_name, globals(), locals(), [class_name])
# get the class, will raise AttributeError if class cannot be found
c = getattr(m, class_name)
return c
@torch.no_grad()
def throughput(data_loader: DataLoader, model: torch.nn.Module, logger: Logger):
model.eval()
for idx, (images, _) in enumerate(data_loader):
images = images.cuda(non_blocking=True)
batch_size = images.shape[0]
for i in range(50):
model(images)
torch.cuda.synchronize()
logger.info("throughput averaged with 30 times")
tic1 = time()
for i in range(30):
model(images)
torch.cuda.synchronize()
tic2 = time()
logger.info(
f"batch_size {batch_size} throughput {30 * batch_size / (tic2 - tic1)}"
)