import os import sys import random from datetime import datetime import torch import numpy as np import skimage.measure import xarray as xr import pandas as pd from logging import Logger from torch.utils.data import Dataset from surya.utils.distributed import get_rank from surya.utils.log import create_logger from functools import cache from numba import njit, prange import hdf5plugin @njit(parallel=True) def fast_transform(data, means, stds, sl_scale_factors, epsilons): """ Implements signum log transform using numba for speed Notes: - This must reside outside the class definition from which it is called. - We used this function during pretraining for faster data loading. On select GPU clusters it leads to the system hanging however when data loading happens outside the GPU thread. See below for a non-numba-enhanced version. Args: data: Numpy array of shape C, H, W means: Numpy array of shape C. Mean per channel. stds: Numpy array of shape C. Standard deviation per channel. sl_scale_factors: Numpy array of shape C. Signum-log scale factors. epsilons: Numpy array of shape C. Constant to avoid zero division. Returns: Numpy array of shape C, H, W. """ C, H, W = data.shape out = np.empty((C, H, W), dtype=np.float32) for c in prange(C): mean = means[c] std = stds[c] eps = epsilons[c] sl_scale_factor = sl_scale_factors[c] for i in range(H): for j in range(W): val = data[c, i, j] val = val * sl_scale_factor if val >= 0: val = np.log1p(val) else: val = -np.log1p(-val) out[c, i, j] = (val - mean) / (std + eps) return out def transform( data: np.ndarray, means: np.ndarray, stds: np.ndarray, sl_scale_factors: np.ndarray, epsilons: np.ndarray ) -> np.ndarray: """ Implements signum log transform. Drop-in replacement for `fast_transform` method above. Args: data: Numpy array of shape C, H, W means: Numpy array of shape C. Mean per channel. stds: Numpy array of shape C. Standard deviation per channel. sl_scale_factors: Numpy array of shape C. Signum-log scale factors. epsilons: Numpy array of shape C. Constant to avoid zero division. Returns: Numpy array of shape C, H, W. """ means = means.reshape(*means.shape, 1, 1) stds = stds.reshape(*stds.shape, 1, 1) sl_scale_factors = sl_scale_factors.reshape(*sl_scale_factors.shape, 1, 1) epsilons = epsilons.reshape(*epsilons.shape, 1, 1) data = data * sl_scale_factors data = np.sign(data) * np.log1p(np.abs(data)) data = (data - means) / (stds + epsilons) return data @njit(parallel=True) def inverse_fast_transform(data, means, stds, sl_scale_factors, epsilons): """ Implements inverse signum log transform using numba for speed Args: data: Numpy array of shape C, H, W means: Numpy array of shape C. Mean per channel. stds: Numpy array of shape C. Standard deviation per channel. sl_scale_factors: Numpy array of shape C. Signum-log scale factors. epsilons: Numpy array of shape C. Constant to avoid zero division. Returns: Numpy array of shape C, H, W. """ C, H, W = data.shape out = np.empty((C, H, W), dtype=np.float32) for c in prange(C): mean = means[c] std = stds[c] eps = epsilons[c] sl_scale_factor = sl_scale_factors[c] for i in range(H): for j in range(W): val = data[c, i, j] val = val * (std + eps) + mean if val >= 0: val = np.expm1(val) else: val = -np.expm1(-val) val = val / sl_scale_factor out[c, i, j] = val return out def inverse_transform_single_channel(data, mean, std, sl_scale_factor, epsilon): """ Implements inverse signum log transform. Args: data: Numpy array of shape C, H, W means: Numpy array of shape C. Mean per channel. stds: Numpy array of shape C. Standard deviation per channel. sl_scale_factors: Numpy array of shape C. Signum-log scale factors. epsilons: Numpy array of shape C. Constant to avoid zero division. Returns: Numpy array of shape C, H, W. """ data = data * (std + epsilon) + mean data = np.sign(data) * np.expm1(np.abs(data)) data = data / sl_scale_factor return data class RandomChannelMaskerTransform: def __init__( self, num_channels, num_mask_aia_channels, phase, drop_hmi_probability ): """ Initialize the RandomChannelMaskerTransform class as a transform. Args: - num_channels: Total number of channels in the input (3rd dimension of the tensor). - num_mask_aia_channels: Number of channels to randomly mask. """ self.num_channels = num_channels self.num_mask_aia_channels = num_mask_aia_channels self.drop_hmi_probability = drop_hmi_probability def __call__(self, input_tensor): C, T, H, W = input_tensor.shape # Unpacking the correct 5 dimensions # Randomly select channels to mask channels_to_mask = random.sample(range(C), self.num_mask_aia_channels) # Create an in-place mask of shape [1, 1, num_channels, 1, 1] mask = torch.ones((C, 1, 1, 1)) mask[channels_to_mask, ...] = 0 # Set selected channels to zero # Apply the mask in-place for memory efficiency masked_tensor = input_tensor * mask # Modify input_tensor directly if self.drop_hmi_probability > random.random(): masked_tensor[-1, ...] = 0 return masked_tensor class HelioNetCDFDataset(Dataset): """ PyTorch dataset to load a curated dataset from the NASA Solar Dynamics Observatory (SDO) mission stored as NetCDF files, with handling for variable timesteps. Internally maintains two databases. The first is `self.index`. This takes the form path present timestep 2011-01-01 00:00:00 /lustre/fs0/scratch/shared/data/2011/01/Arka_2... 1 2011-01-01 00:12:00 /lustre/fs0/scratch/shared/data/2011/01/Arka_2... 1 ... ... ... 2012-11-30 23:48:00 /lustre/fs0/scratch/shared/data/2012/11/Arka_2... 1 The second is `self.valid_indices`. This is simply a list of timesteps -- entries in the index of `self.index` -- which define valid samples. A sample is valid when all timestamps that can be reached by entris in time_delta_input_minutes and time_delta_target_minutes can be reached from it are present. """ def __init__( self, index_path: str, time_delta_input_minutes: list[int], time_delta_target_minutes: int, n_input_timestamps: int, rollout_steps: int, scalers=None, num_mask_aia_channels: int = 0, drop_hmi_probability: float = 0.0, use_latitude_in_learned_flow=False, channels: list[str] | None = None, phase="train", pooling: int | None = None, random_vert_flip: bool = False, ): self.scalers = scalers self.phase = phase self.channels = channels self.num_mask_aia_channels = num_mask_aia_channels self.drop_hmi_probability = drop_hmi_probability self.n_input_timestamps = n_input_timestamps self.rollout_steps = rollout_steps self.use_latitude_in_learned_flow = use_latitude_in_learned_flow self.pooling = pooling if pooling is not None else 1 self.random_vert_flip = random_vert_flip if self.channels is None: # AIA + HMI channels self.channels = [ "0094", "0131", "0171", "0193", "0211", "0304", "0335", "hmi", ] self.in_channels = len(self.channels) self.masker = RandomChannelMaskerTransform( num_channels=self.in_channels, num_mask_aia_channels=self.num_mask_aia_channels, phase=self.phase, drop_hmi_probability=self.drop_hmi_probability, ) # Convert time delta to numpy timedelta64 self.time_delta_input_minutes = sorted( np.timedelta64(t, "m") for t in time_delta_input_minutes ) self.time_delta_target_minutes = [ np.timedelta64(iroll * time_delta_target_minutes, "m") for iroll in range(1, rollout_steps + 2) ] # Create the index self.index = pd.read_csv(index_path) self.index = self.index[self.index["present"] == 1] self.index["timestep"] = pd.to_datetime(self.index["timestep"]).values.astype( "datetime64[ns]" ) self.index.set_index("timestep", inplace=True) self.index.sort_index(inplace=True) # Filter out rows where the sequence is not fully present self.valid_indices = self.filter_valid_indices() self.adjusted_length = len(self.valid_indices) self.rank = get_rank() self.logger: Logger | None = None def create_logger(self): """ Creates a logger attached to self.logger. The logger is identified by SLURM job ID as well as the data processes rank and process ID. """ os.makedirs("logs/data", exist_ok=True) timestamp = datetime.now().strftime("%Y%m%dT%H%M%SZ") pid = os.getpid() self.logger = create_logger( output_dir="logs/data", dist_rank=self.rank, name=f"{timestamp}_{self.rank:>03}_data_{self.phase}_{pid}", ) def filter_valid_indices(self): """ Extracts timestamps from the index of self.index that define valid samples. Args: Returns: List of timestamps. """ valid_indices = [] time_deltas = np.unique( self.time_delta_input_minutes + self.time_delta_target_minutes ) for reference_timestep in self.index.index: required_timesteps = reference_timestep + time_deltas if all(t in self.index.index for t in required_timesteps): valid_indices.append(reference_timestep) return valid_indices def __len__(self): return self.adjusted_length def __getitem__(self, idx: int) -> dict: """ Args: idx: Index of sample to load. (Pytorch standard.) Returns: Dictionary with following keys. The values are tensors with shape as follows: ts (torch.Tensor): C, T, H, W time_delta_input (torch.Tensor): T input_latitude (torch.Tensor): T forecast (torch.Tensor): C, L, H, W lead_time_delta (torch.Tensor): L forecast_latitude (torch.Tensor): L C - Channels, T - Input times, H - Image height, W - Image width, L - Lead time. """ if self.logger is None: self.create_logger() self.logger.info(f"HelioNetCDFDataset of length {self.__len__()}.") exception_counter = 0 max_exception = 100 self.logger.info(f"Starting to retrieve index {idx}.") while True: try: sample = self._get_index_data(idx) except Exception as e: exception_counter += 1 if exception_counter >= max_exception: raise e reference_timestep = self.valid_indices[idx] self.logger.warning( f"Failed retrieving index {idx}. Timestamp {reference_timestep}. Attempt {exception_counter}." ) idx = (idx + 1) % self.__len__() else: self.logger.info(f"Returning index {idx}.") return sample def _get_index_data(self, idx: int) -> dict: """ Args: idx: Index of sample to load. (Pytorch standard.) Returns: Dictionary with following keys. The values are tensors with shape as follows: ts (torch.Tensor): C, T, H, W time_delta_input (torch.Tensor): T input_latitude (torch.Tensor): T forecast (torch.Tensor): C, L, H, W lead_time_delta (torch.Tensor): L forecast_latitude (torch.Tensor): L C - Channels, T - Input times, H - Image height, W - Image width, L - Lead time. """ # start_time = time.time() time_deltas = np.array( sorted( random.sample( self.time_delta_input_minutes[:-1], self.n_input_timestamps - 1 ) ) + [self.time_delta_input_minutes[-1]] + self.time_delta_target_minutes ) reference_timestep = self.valid_indices[idx] required_timesteps = reference_timestep + time_deltas sequence_data = [ self.transform_data( self.load_nc_data( self.index.loc[timestep, "path"], timestep, self.channels ) ) for timestep in required_timesteps ] # Split sequence_data into inputs and target inputs = sequence_data[: -self.rollout_steps - 1] targets = sequence_data[-self.rollout_steps - 1 :] stacked_inputs = np.stack(inputs, axis=1) stacked_targets = np.stack(targets, axis=1) timestamps_input = required_timesteps[: -self.rollout_steps - 1] timestamps_targets = required_timesteps[-self.rollout_steps - 1 :] if self.num_mask_aia_channels > 0 or self.drop_hmi_probability: # assert 0 < self.num_mask_aia_channels < self.in_channels, \ # f'num_mask_aia_channels = {self.num_mask_aia_channels} should lie between 0 and {self.in_channels}' stacked_inputs = self.masker(stacked_inputs) time_delta_input_float = ( time_deltas[-self.rollout_steps - 2] - time_deltas[: -self.rollout_steps - 1] ) / np.timedelta64(1, "h") time_delta_input_float = time_delta_input_float.astype(np.float32) lead_time_delta_float = ( time_deltas[-self.rollout_steps - 2] - time_deltas[-self.rollout_steps - 1 :] ) / np.timedelta64(1, "h") lead_time_delta_float = lead_time_delta_float.astype(np.float32) # print('LocalRank', int(os.environ["LOCAL_RANK"]), # 'GlobalRank', int(os.environ["RANK"]), # 'worker', torch.utils.data.get_worker_info().id, # f': Processed Input: {idx} ',time.time()- start_time) metadata = { "timestamps_input": timestamps_input, "timestamps_targets": timestamps_targets, } if self.random_vert_flip: if torch.bernoulli(torch.ones(()) / 2) == 1: stacked_inputs = torch.flip(stacked_inputs, dims=-2) stacked_targets = torch.flip(stacked_inputs, dims=-2) if self.use_latitude_in_learned_flow: from sunpy.coordinates.ephemeris import get_earth sequence_latitude = [ get_earth(timestep).lat.value for timestep in required_timesteps ] input_latitudes = sequence_latitude[: -self.rollout_steps - 1] target_latitude = sequence_latitude[-self.rollout_steps - 1 :] return { "ts": stacked_inputs, "time_delta_input": time_delta_input_float, "input_latitudes": input_latitudes, "forecast": stacked_targets, "lead_time_delta": lead_time_delta_float, "forecast_latitude": target_latitude, }, metadata return { "ts": stacked_inputs, "time_delta_input": time_delta_input_float, "forecast": stacked_targets, "lead_time_delta": lead_time_delta_float, }, metadata def load_nc_data( self, filepath: str, timestep: pd.Timestamp, channels: list[str] ) -> np.ndarray: """ Args: filepath: String or Pathlike. Points to NetCDF file to open. timestep: Identifies timestamp to retrieve. Returns: Numpy array of shape (C, H, W). """ self.logger.info(f"Reading file {filepath}.") with xr.open_dataset( filepath, engine="h5netcdf", chunks=None, cache=False, ) as ds: data = ds[channels].to_array().load().to_numpy() return data @cache def transformation_inputs(self) -> (np.ndarray, np.ndarray, np.ndarray, np.ndarray): means = np.array([self.scalers[ch].mean for ch in self.channels]) stds = np.array([self.scalers[ch].std for ch in self.channels]) epsilons = np.array([self.scalers[ch].epsilon for ch in self.channels]) sl_scale_factors = np.array( [self.scalers[ch].sl_scale_factor for ch in self.channels] ) return means, stds, epsilons, sl_scale_factors def transform_data(self, data: np.ndarray) -> np.ndarray: """ Applies scalers. Args: data: Numpy array of shape (C, H, W) Returns: Tensor of shape (C, H, W). Data type float32. Uses: numba to speed up transform tvk-srm-heliofm environment cloned from srm-heliofm with numba added tvk_dgx_slurm.sh shell script modified to use new environment and new jobname train_spectformer_dgx.yaml new jobname """ assert data.ndim == 3 if self.pooling > 1: data = skimage.measure.block_reduce( data, block_size=(1, self.pooling, self.pooling), func=np.mean ) means, stds, epsilons, sl_scale_factors = self.transformation_inputs() result_np = transform(data, means, stds, sl_scale_factors, epsilons) return result_np