File size: 11,521 Bytes
06c29a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import gradio as gr
import json
import os
from typing import Any, List, Dict
import spaces

from PIL import Image, ImageDraw
import requests
from transformers import AutoModelForImageTextToText, AutoProcessor
from transformers.models.qwen2_vl.image_processing_qwen2_vl import smart_resize
import torch
import re
import traceback

# --- Configuration ---
MODEL_ID = "Hcompany/Holo1-3B"

# --- Helpers (robust across different transformers versions) ---

def pick_device() -> str:
    # Force CPU per request
    return "cpu"

def apply_chat_template_compat(processor, messages: List[Dict[str, Any]]) -> str:
    """
    Works whether apply_chat_template lives on the processor or tokenizer,
    or not at all (falls back to naive text join of 'text' contents).
    """
    tok = getattr(processor, "tokenizer", None)
    if hasattr(processor, "apply_chat_template"):
        return processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    if tok is not None and hasattr(tok, "apply_chat_template"):
        return tok.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    # Fallback: concatenate visible text segments
    texts = []
    for m in messages:
        for c in m.get("content", []):
            if isinstance(c, dict) and c.get("type") == "text":
                texts.append(c.get("text", ""))
    return "\n".join(texts)

def batch_decode_compat(processor, token_id_batches, **kw):
    tok = getattr(processor, "tokenizer", None)
    if tok is not None and hasattr(tok, "batch_decode"):
        return tok.batch_decode(token_id_batches, **kw)
    if hasattr(processor, "batch_decode"):
        return processor.batch_decode(token_id_batches, **kw)
    raise AttributeError("No batch_decode available on processor or tokenizer.")

def get_image_proc_params(processor) -> Dict[str, int]:
    """
    Safely access image processor params with defaults that work for Qwen2-VL family.
    """
    ip = getattr(processor, "image_processor", None)
    return {
        "patch_size": getattr(ip, "patch_size", 14),
        "merge_size": getattr(ip, "merge_size", 1),
        "min_pixels": getattr(ip, "min_pixels", 256 * 256),
        "max_pixels": getattr(ip, "max_pixels", 1280 * 1280),
    }

def trim_generated(generated_ids, inputs):
    """
    Trim prompt tokens from generated tokens when input_ids exist.
    """
    in_ids = getattr(inputs, "input_ids", None)
    if in_ids is None and isinstance(inputs, dict):
        in_ids = inputs.get("input_ids", None)
    if in_ids is None:
        return [out_ids for out_ids in generated_ids]
    return [out_ids[len(in_seq):] for in_seq, out_ids in zip(in_ids, generated_ids)]

# --- Model and Processor Loading (Load once) ---
print(f"Loading model and processor for {MODEL_ID} (CPU only)...")
model = None
processor = None
model_loaded = False
load_error_message = ""

try:
    # CPU-friendly dtype; bf16 on CPU is spotty, so prefer float32
    model = AutoModelForImageTextToText.from_pretrained(
        MODEL_ID,
        torch_dtype=torch.float32,
        trust_remote_code=True
    ).to(pick_device())
    processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
    model_loaded = True
    print("Model and processor loaded successfully.")
except Exception as e:
    load_error_message = (
        f"Error loading model/processor: {e}\n"
        "This might be due to network issues, an incorrect model ID, or incompatible library versions.\n"
        "Check the full traceback in the Space logs."
    )
    print(load_error_message)
    traceback.print_exc()

# --- Prompt builder ---
def get_localization_prompt(pil_image: Image.Image, instruction: str) -> List[dict]:
    guidelines: str = (
        "Localize an element on the GUI image according to my instructions and "
        "output a click position as Click(x, y) with x num pixels from the left edge "
        "and y num pixels from the top edge."
    )
    return [
        {
            "role": "user",
            "content": [
                {"type": "image", "image": pil_image},
                {"type": "text", "text": f"{guidelines}\n{instruction}"}
            ],
        }
    ]

# --- Inference (CPU) ---
def run_inference_localization(
    messages_for_template: List[dict[str, Any]],
    pil_image_for_processing: Image.Image
) -> str:
    """
    CPU inference; robust to processor/tokenizer differences and logs full traceback on failure.
    """
    try:
        model.to(pick_device())

        # 1) Build prompt text via robust helper
        text_prompt = apply_chat_template_compat(processor, messages_for_template)

        # 2) Prepare inputs (text + image)
        inputs = processor(
            text=[text_prompt],
            images=[pil_image_for_processing],
            padding=True,
            return_tensors="pt",
        )

        # Move tensor inputs to the same device as model (CPU)
        if isinstance(inputs, dict):
            for k, v in list(inputs.items()):
                if hasattr(v, "to"):
                    inputs[k] = v.to(model.device)

        # 3) Generate (deterministic)
        generated_ids = model.generate(
            **inputs,
            max_new_tokens=128,
            do_sample=False,
        )

        # 4) Trim prompt tokens if possible
        generated_ids_trimmed = trim_generated(generated_ids, inputs)

        # 5) Decode via robust helper
        decoded_output = batch_decode_compat(
            processor,
            generated_ids_trimmed,
            skip_special_tokens=True,
            clean_up_tokenization_spaces=False
        )

        return decoded_output[0] if decoded_output else ""
    except Exception as e:
        print(f"Error during model inference: {e}")
        traceback.print_exc()
        raise

# --- Gradio processing function ---
def predict_click_location(input_pil_image: Image.Image, instruction: str):
    if not model_loaded or not processor or not model:
        return f"Model not loaded. Error: {load_error_message}", None
    if not input_pil_image:
        return "No image provided. Please upload an image.", None
    if not instruction or instruction.strip() == "":
        return "No instruction provided. Please type an instruction.", input_pil_image.copy().convert("RGB")

    # 1) Resize according to image processor params (safe defaults if missing)
    try:
        ip = get_image_proc_params(processor)
        resized_height, resized_width = smart_resize(
            input_pil_image.height,
            input_pil_image.width,
            factor=ip["patch_size"] * ip["merge_size"],
            min_pixels=ip["min_pixels"],
            max_pixels=ip["max_pixels"],
        )
        resized_image = input_pil_image.resize(
            size=(resized_width, resized_height),
            resample=Image.Resampling.LANCZOS
        )
    except Exception as e:
        print(f"Error resizing image: {e}")
        traceback.print_exc()
        return f"Error resizing image: {e}", input_pil_image.copy().convert("RGB")

    # 2) Build messages with image + instruction
    messages = get_localization_prompt(resized_image, instruction)

    # 3) Run inference
    try:
        coordinates_str = run_inference_localization(messages, resized_image)
    except Exception as e:
        return f"Error during model inference: {e}", resized_image.copy().convert("RGB")

    # 4) Parse coordinates and draw marker
    output_image_with_click = resized_image.copy().convert("RGB")
    match = re.search(r"Click\((\d+),\s*(\d+)\)", coordinates_str)
    if match:
        try:
            x = int(match.group(1))
            y = int(match.group(2))
            draw = ImageDraw.Draw(output_image_with_click)
            radius = max(5, min(resized_width // 100, resized_height // 100, 15))
            bbox = (x - radius, y - radius, x + radius, y + radius)
            draw.ellipse(bbox, outline="red", width=max(2, radius // 4))
            print(f"Predicted and drawn click at: ({x}, {y}) on resized image ({resized_width}x{resized_height})")
        except Exception as e:
            print(f"Error drawing on image: {e}")
            traceback.print_exc()
    else:
        print(f"Could not parse 'Click(x, y)' from model output: {coordinates_str}")

    return coordinates_str, output_image_with_click

# --- Load Example Data ---
example_image = None
example_instruction = "Select July 14th as the check-out date"
try:
    example_image_url = "https://huggingface.co/Hcompany/Holo1-7B/resolve/main/calendar_example.jpg"
    example_image = Image.open(requests.get(example_image_url, stream=True).raw)
except Exception as e:
    print(f"Could not load example image from URL: {e}")
    traceback.print_exc()
    try:
        example_image = Image.new("RGB", (200, 150), color="lightgray")
        draw = ImageDraw.Draw(example_image)
        draw.text((10, 10), "Example image\nfailed to load", fill="black")
    except Exception:
        pass

# --- Gradio UI ---
title = "Holo1-7B: Action VLM Localization Demo (CPU)"
article = f"""
<p style='text-align: center'>
Model: <a href='https://huggingface.co/{MODEL_ID}' target='_blank'>{MODEL_ID}</a> by HCompany |
Paper: <a href='https://cdn.prod.website-files.com/67e2dbd9acff0c50d4c8a80c/683ec8095b353e8b38317f80_h_tech_report_v1.pdf' target='_blank'>HCompany Tech Report</a> |
Blog: <a href='https://www.hcompany.ai/surfer-h' target='_blank'>Surfer-H Blog Post</a>
</p>
"""

if not model_loaded:
    with gr.Blocks() as demo:
        gr.Markdown(f"# <center>⚠️ Error: Model Failed to Load ⚠️</center>")
        gr.Markdown(f"<center>{load_error_message}</center>")
        gr.Markdown("<center>See Space logs for the full traceback.</center>")
else:
    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        gr.Markdown(f"<h1 style='text-align: center;'>{title}</h1>")

        with gr.Row():
            with gr.Column(scale=1):
                input_image_component = gr.Image(type="pil", label="Input UI Image", height=400)
                instruction_component = gr.Textbox(
                    label="Instruction",
                    placeholder="e.g., Click the 'Login' button",
                    info="Type the action you want the model to localize on the image."
                )
                submit_button = gr.Button("Localize Click", variant="primary")

            with gr.Column(scale=1):
                output_coords_component = gr.Textbox(
                    label="Predicted Coordinates (Format: Click(x, y))",
                    interactive=False
                )
                output_image_component = gr.Image(
                    type="pil",
                    label="Image with Predicted Click Point",
                    height=400,
                    interactive=False
                )

        if example_image:
            gr.Examples(
                examples=[[example_image, example_instruction]],
                inputs=[input_image_component, instruction_component],
                outputs=[output_coords_component, output_image_component],
                fn=predict_click_location,
                cache_examples="lazy",
            )

        gr.Markdown(article)

        submit_button.click(
            fn=predict_click_location,
            inputs=[input_image_component, instruction_component],
            outputs=[output_coords_component, output_image_component]
        )

if __name__ == "__main__":
    # CPU Spaces can be slow; keep debug True for logs
    demo.launch(debug=True)