Spaces:
Running
Running
File size: 11,521 Bytes
06c29a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
import gradio as gr
import json
import os
from typing import Any, List, Dict
import spaces
from PIL import Image, ImageDraw
import requests
from transformers import AutoModelForImageTextToText, AutoProcessor
from transformers.models.qwen2_vl.image_processing_qwen2_vl import smart_resize
import torch
import re
import traceback
# --- Configuration ---
MODEL_ID = "Hcompany/Holo1-3B"
# --- Helpers (robust across different transformers versions) ---
def pick_device() -> str:
# Force CPU per request
return "cpu"
def apply_chat_template_compat(processor, messages: List[Dict[str, Any]]) -> str:
"""
Works whether apply_chat_template lives on the processor or tokenizer,
or not at all (falls back to naive text join of 'text' contents).
"""
tok = getattr(processor, "tokenizer", None)
if hasattr(processor, "apply_chat_template"):
return processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
if tok is not None and hasattr(tok, "apply_chat_template"):
return tok.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
# Fallback: concatenate visible text segments
texts = []
for m in messages:
for c in m.get("content", []):
if isinstance(c, dict) and c.get("type") == "text":
texts.append(c.get("text", ""))
return "\n".join(texts)
def batch_decode_compat(processor, token_id_batches, **kw):
tok = getattr(processor, "tokenizer", None)
if tok is not None and hasattr(tok, "batch_decode"):
return tok.batch_decode(token_id_batches, **kw)
if hasattr(processor, "batch_decode"):
return processor.batch_decode(token_id_batches, **kw)
raise AttributeError("No batch_decode available on processor or tokenizer.")
def get_image_proc_params(processor) -> Dict[str, int]:
"""
Safely access image processor params with defaults that work for Qwen2-VL family.
"""
ip = getattr(processor, "image_processor", None)
return {
"patch_size": getattr(ip, "patch_size", 14),
"merge_size": getattr(ip, "merge_size", 1),
"min_pixels": getattr(ip, "min_pixels", 256 * 256),
"max_pixels": getattr(ip, "max_pixels", 1280 * 1280),
}
def trim_generated(generated_ids, inputs):
"""
Trim prompt tokens from generated tokens when input_ids exist.
"""
in_ids = getattr(inputs, "input_ids", None)
if in_ids is None and isinstance(inputs, dict):
in_ids = inputs.get("input_ids", None)
if in_ids is None:
return [out_ids for out_ids in generated_ids]
return [out_ids[len(in_seq):] for in_seq, out_ids in zip(in_ids, generated_ids)]
# --- Model and Processor Loading (Load once) ---
print(f"Loading model and processor for {MODEL_ID} (CPU only)...")
model = None
processor = None
model_loaded = False
load_error_message = ""
try:
# CPU-friendly dtype; bf16 on CPU is spotty, so prefer float32
model = AutoModelForImageTextToText.from_pretrained(
MODEL_ID,
torch_dtype=torch.float32,
trust_remote_code=True
).to(pick_device())
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
model_loaded = True
print("Model and processor loaded successfully.")
except Exception as e:
load_error_message = (
f"Error loading model/processor: {e}\n"
"This might be due to network issues, an incorrect model ID, or incompatible library versions.\n"
"Check the full traceback in the Space logs."
)
print(load_error_message)
traceback.print_exc()
# --- Prompt builder ---
def get_localization_prompt(pil_image: Image.Image, instruction: str) -> List[dict]:
guidelines: str = (
"Localize an element on the GUI image according to my instructions and "
"output a click position as Click(x, y) with x num pixels from the left edge "
"and y num pixels from the top edge."
)
return [
{
"role": "user",
"content": [
{"type": "image", "image": pil_image},
{"type": "text", "text": f"{guidelines}\n{instruction}"}
],
}
]
# --- Inference (CPU) ---
def run_inference_localization(
messages_for_template: List[dict[str, Any]],
pil_image_for_processing: Image.Image
) -> str:
"""
CPU inference; robust to processor/tokenizer differences and logs full traceback on failure.
"""
try:
model.to(pick_device())
# 1) Build prompt text via robust helper
text_prompt = apply_chat_template_compat(processor, messages_for_template)
# 2) Prepare inputs (text + image)
inputs = processor(
text=[text_prompt],
images=[pil_image_for_processing],
padding=True,
return_tensors="pt",
)
# Move tensor inputs to the same device as model (CPU)
if isinstance(inputs, dict):
for k, v in list(inputs.items()):
if hasattr(v, "to"):
inputs[k] = v.to(model.device)
# 3) Generate (deterministic)
generated_ids = model.generate(
**inputs,
max_new_tokens=128,
do_sample=False,
)
# 4) Trim prompt tokens if possible
generated_ids_trimmed = trim_generated(generated_ids, inputs)
# 5) Decode via robust helper
decoded_output = batch_decode_compat(
processor,
generated_ids_trimmed,
skip_special_tokens=True,
clean_up_tokenization_spaces=False
)
return decoded_output[0] if decoded_output else ""
except Exception as e:
print(f"Error during model inference: {e}")
traceback.print_exc()
raise
# --- Gradio processing function ---
def predict_click_location(input_pil_image: Image.Image, instruction: str):
if not model_loaded or not processor or not model:
return f"Model not loaded. Error: {load_error_message}", None
if not input_pil_image:
return "No image provided. Please upload an image.", None
if not instruction or instruction.strip() == "":
return "No instruction provided. Please type an instruction.", input_pil_image.copy().convert("RGB")
# 1) Resize according to image processor params (safe defaults if missing)
try:
ip = get_image_proc_params(processor)
resized_height, resized_width = smart_resize(
input_pil_image.height,
input_pil_image.width,
factor=ip["patch_size"] * ip["merge_size"],
min_pixels=ip["min_pixels"],
max_pixels=ip["max_pixels"],
)
resized_image = input_pil_image.resize(
size=(resized_width, resized_height),
resample=Image.Resampling.LANCZOS
)
except Exception as e:
print(f"Error resizing image: {e}")
traceback.print_exc()
return f"Error resizing image: {e}", input_pil_image.copy().convert("RGB")
# 2) Build messages with image + instruction
messages = get_localization_prompt(resized_image, instruction)
# 3) Run inference
try:
coordinates_str = run_inference_localization(messages, resized_image)
except Exception as e:
return f"Error during model inference: {e}", resized_image.copy().convert("RGB")
# 4) Parse coordinates and draw marker
output_image_with_click = resized_image.copy().convert("RGB")
match = re.search(r"Click\((\d+),\s*(\d+)\)", coordinates_str)
if match:
try:
x = int(match.group(1))
y = int(match.group(2))
draw = ImageDraw.Draw(output_image_with_click)
radius = max(5, min(resized_width // 100, resized_height // 100, 15))
bbox = (x - radius, y - radius, x + radius, y + radius)
draw.ellipse(bbox, outline="red", width=max(2, radius // 4))
print(f"Predicted and drawn click at: ({x}, {y}) on resized image ({resized_width}x{resized_height})")
except Exception as e:
print(f"Error drawing on image: {e}")
traceback.print_exc()
else:
print(f"Could not parse 'Click(x, y)' from model output: {coordinates_str}")
return coordinates_str, output_image_with_click
# --- Load Example Data ---
example_image = None
example_instruction = "Select July 14th as the check-out date"
try:
example_image_url = "https://huggingface.co/Hcompany/Holo1-7B/resolve/main/calendar_example.jpg"
example_image = Image.open(requests.get(example_image_url, stream=True).raw)
except Exception as e:
print(f"Could not load example image from URL: {e}")
traceback.print_exc()
try:
example_image = Image.new("RGB", (200, 150), color="lightgray")
draw = ImageDraw.Draw(example_image)
draw.text((10, 10), "Example image\nfailed to load", fill="black")
except Exception:
pass
# --- Gradio UI ---
title = "Holo1-7B: Action VLM Localization Demo (CPU)"
article = f"""
<p style='text-align: center'>
Model: <a href='https://huggingface.co/{MODEL_ID}' target='_blank'>{MODEL_ID}</a> by HCompany |
Paper: <a href='https://cdn.prod.website-files.com/67e2dbd9acff0c50d4c8a80c/683ec8095b353e8b38317f80_h_tech_report_v1.pdf' target='_blank'>HCompany Tech Report</a> |
Blog: <a href='https://www.hcompany.ai/surfer-h' target='_blank'>Surfer-H Blog Post</a>
</p>
"""
if not model_loaded:
with gr.Blocks() as demo:
gr.Markdown(f"# <center>⚠️ Error: Model Failed to Load ⚠️</center>")
gr.Markdown(f"<center>{load_error_message}</center>")
gr.Markdown("<center>See Space logs for the full traceback.</center>")
else:
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(f"<h1 style='text-align: center;'>{title}</h1>")
with gr.Row():
with gr.Column(scale=1):
input_image_component = gr.Image(type="pil", label="Input UI Image", height=400)
instruction_component = gr.Textbox(
label="Instruction",
placeholder="e.g., Click the 'Login' button",
info="Type the action you want the model to localize on the image."
)
submit_button = gr.Button("Localize Click", variant="primary")
with gr.Column(scale=1):
output_coords_component = gr.Textbox(
label="Predicted Coordinates (Format: Click(x, y))",
interactive=False
)
output_image_component = gr.Image(
type="pil",
label="Image with Predicted Click Point",
height=400,
interactive=False
)
if example_image:
gr.Examples(
examples=[[example_image, example_instruction]],
inputs=[input_image_component, instruction_component],
outputs=[output_coords_component, output_image_component],
fn=predict_click_location,
cache_examples="lazy",
)
gr.Markdown(article)
submit_button.click(
fn=predict_click_location,
inputs=[input_image_component, instruction_component],
outputs=[output_coords_component, output_image_component]
)
if __name__ == "__main__":
# CPU Spaces can be slow; keep debug True for logs
demo.launch(debug=True)
|