johnbridges commited on
Commit
5ddb3ea
·
1 Parent(s): 07fa5a7
Files changed (4) hide show
  1. app.py +269 -0
  2. commit +3 -0
  3. requirements.txt +2 -0
  4. test +0 -0
app.py ADDED
@@ -0,0 +1,269 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import subprocess
2
+ subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
3
+
4
+ import gradio as gr
5
+ import json
6
+ import os
7
+ from typing import Any, List
8
+ import spaces
9
+
10
+ from PIL import Image, ImageDraw
11
+ import requests
12
+ from transformers import AutoModelForImageTextToText, AutoProcessor
13
+ from transformers.models.qwen2_vl.image_processing_qwen2_vl import smart_resize
14
+ import torch
15
+ import re
16
+
17
+ # --- Configuration ---
18
+ MODEL_ID = "Hcompany/Holo1-7B"
19
+
20
+ # --- Model and Processor Loading (Load once) ---
21
+ print(f"Loading model and processor for {MODEL_ID}...")
22
+ model = None
23
+ processor = None
24
+ model_loaded = False
25
+ load_error_message = ""
26
+
27
+ try:
28
+ model = AutoModelForImageTextToText.from_pretrained(
29
+ MODEL_ID,
30
+ torch_dtype=torch.bfloat16,
31
+ attn_implementation="flash_attention_2",
32
+ trust_remote_code=True
33
+ ).to("cuda")
34
+ processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
35
+ model_loaded = True
36
+ print("Model and processor loaded successfully.")
37
+ except Exception as e:
38
+ load_error_message = f"Error loading model/processor: {e}\n" \
39
+ "This might be due to network issues, an incorrect model ID, or missing dependencies (like flash_attention_2 if enabled by default in some config).\n" \
40
+ "Ensure you have a stable internet connection and the necessary libraries installed."
41
+ print(load_error_message)
42
+
43
+ # --- Helper functions from the model card (or adapted) ---
44
+
45
+ def get_localization_prompt(pil_image: Image.Image, instruction: str) -> List[dict[str, Any]]:
46
+ """
47
+ Prepares the prompt structure for the Holo1 model for localization tasks.
48
+ The `pil_image` argument here is primarily for semantic completeness in the prompt structure,
49
+ as the actual image tensor is handled by the processor later.
50
+ """
51
+ guidelines: str = "Localize an element on the GUI image according to my instructions and output a click position as Click(x, y) with x num pixels from the left edge and y num pixels from the top edge."
52
+
53
+ return [
54
+ {
55
+ "role": "user",
56
+ "content": [
57
+ {
58
+ "type": "image",
59
+ "image": pil_image,
60
+ },
61
+ {"type": "text", "text": f"{guidelines}\n{instruction}"},
62
+ ],
63
+ }
64
+ ]
65
+
66
+ @spaces.GPU(duration=20)
67
+ def run_inference_localization(
68
+ messages_for_template: List[dict[str, Any]],
69
+ pil_image_for_processing: Image.Image
70
+ ) -> str:
71
+ model.to("cuda")
72
+ torch.cuda.set_device(0)
73
+ """
74
+ Runs inference using the Holo1 model.
75
+ - messages_for_template: The prompt structure, potentially including the PIL image object
76
+ (which apply_chat_template converts to an image tag).
77
+ - pil_image_for_processing: The actual PIL image to be processed into tensors.
78
+ """
79
+ # 1. Apply chat template to messages. This will create the text part of the prompt,
80
+ # including image tags if the image was part of `messages_for_template`.
81
+ text_prompt = processor.apply_chat_template(
82
+ messages_for_template,
83
+ tokenize=False,
84
+ add_generation_prompt=True
85
+ )
86
+
87
+ # 2. Process text and image together to get model inputs
88
+ inputs = processor(
89
+ text=[text_prompt],
90
+ images=[pil_image_for_processing], # Provide the actual image data here
91
+ padding=True,
92
+ return_tensors="pt",
93
+ )
94
+ inputs = inputs.to(model.device)
95
+
96
+ # 3. Generate response
97
+ # Using do_sample=False for more deterministic output, as in the model card's structured output example
98
+ generated_ids = model.generate(**inputs, max_new_tokens=128, do_sample=False)
99
+
100
+ # 4. Trim input_ids from generated_ids to get only the generated part
101
+ generated_ids_trimmed = [
102
+ out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
103
+ ]
104
+
105
+ # 5. Decode the generated tokens
106
+ decoded_output = processor.batch_decode(
107
+ generated_ids_trimmed,
108
+ skip_special_tokens=True,
109
+ clean_up_tokenization_spaces=False
110
+ )
111
+
112
+ return decoded_output[0] if decoded_output else ""
113
+
114
+
115
+ # --- Gradio processing function ---
116
+ def predict_click_location(input_pil_image: Image.Image, instruction: str):
117
+ if not model_loaded or not processor or not model:
118
+ return f"Model not loaded. Error: {load_error_message}", None
119
+ if not input_pil_image:
120
+ return "No image provided. Please upload an image.", None
121
+ if not instruction or instruction.strip() == "":
122
+ return "No instruction provided. Please type an instruction.", input_pil_image.copy().convert("RGB")
123
+
124
+ # 1. Prepare image: Resize according to model's image processor's expected properties
125
+ # This ensures predicted coordinates match the (resized) image dimensions.
126
+ image_proc_config = processor.image_processor
127
+ try:
128
+ resized_height, resized_width = smart_resize(
129
+ input_pil_image.height,
130
+ input_pil_image.width,
131
+ factor=image_proc_config.patch_size * image_proc_config.merge_size,
132
+ min_pixels=image_proc_config.min_pixels,
133
+ max_pixels=image_proc_config.max_pixels,
134
+ )
135
+ # Using LANCZOS for resampling as it's generally good for downscaling.
136
+ # The model card used `resample=None`, which might imply nearest or default.
137
+ # For visual quality in the demo, LANCZOS is reasonable.
138
+ resized_image = input_pil_image.resize(
139
+ size=(resized_width, resized_height),
140
+ resample=Image.Resampling.LANCZOS # type: ignore
141
+ )
142
+ except Exception as e:
143
+ print(f"Error resizing image: {e}")
144
+ return f"Error resizing image: {e}", input_pil_image.copy().convert("RGB")
145
+
146
+ # 2. Create the prompt using the resized image (for correct image tagging context) and instruction
147
+ messages = get_localization_prompt(resized_image, instruction)
148
+
149
+ # 3. Run inference
150
+ # Pass `messages` (which includes the image object for template processing)
151
+ # and `resized_image` (for actual tensor conversion).
152
+ try:
153
+ coordinates_str = run_inference_localization(messages, resized_image)
154
+ except Exception as e:
155
+ print(f"Error during model inference: {e}")
156
+ return f"Error during model inference: {e}", resized_image.copy().convert("RGB")
157
+
158
+ # 4. Parse coordinates and draw on the image
159
+ output_image_with_click = resized_image.copy().convert("RGB") # Ensure it's RGB for drawing
160
+ parsed_coords = None
161
+
162
+ # Expected format from the model: "Click(x, y)"
163
+ match = re.search(r"Click\((\d+),\s*(\d+)\)", coordinates_str)
164
+ if match:
165
+ try:
166
+ x = int(match.group(1))
167
+ y = int(match.group(2))
168
+ parsed_coords = (x, y)
169
+
170
+ draw = ImageDraw.Draw(output_image_with_click)
171
+ # Make the marker somewhat responsive to image size, but not too small/large
172
+ radius = max(5, min(resized_width // 100, resized_height // 100, 15))
173
+
174
+ # Define the bounding box for the ellipse (circle)
175
+ bbox = (x - radius, y - radius, x + radius, y + radius)
176
+ draw.ellipse(bbox, outline="red", width=max(2, radius // 4)) # Draw a red circle
177
+ print(f"Predicted and drawn click at: ({x}, {y}) on resized image ({resized_width}x{resized_height})")
178
+ except ValueError:
179
+ print(f"Could not parse integers from coordinates: {coordinates_str}")
180
+ # Keep original coordinates_str, output_image_with_click will be the resized image without a mark
181
+ except Exception as e:
182
+ print(f"Error drawing on image: {e}")
183
+ else:
184
+ print(f"Could not parse 'Click(x, y)' from model output: {coordinates_str}")
185
+
186
+ return coordinates_str, output_image_with_click
187
+
188
+ # --- Load Example Data ---
189
+ example_image = None
190
+ example_instruction = "Select July 14th as the check-out date"
191
+ try:
192
+ example_image_url = "https://huggingface.co/Hcompany/Holo1-7B/resolve/main/calendar_example.jpg"
193
+ example_image = Image.open(requests.get(example_image_url, stream=True).raw)
194
+ except Exception as e:
195
+ print(f"Could not load example image from URL: {e}")
196
+ # Create a placeholder image if loading fails, so Gradio example still works
197
+ try:
198
+ example_image = Image.new("RGB", (200, 150), color="lightgray")
199
+ draw = ImageDraw.Draw(example_image)
200
+ draw.text((10, 10), "Example image\nfailed to load", fill="black")
201
+ except: # If PIL itself is an issue (unlikely here but good for robustness)
202
+ pass
203
+
204
+
205
+ # --- Gradio Interface Definition ---
206
+ title = "Holo1-7B: Action VLM Localization Demo"
207
+ description = """
208
+ This demo showcases **Holo1-7B**, an Action Vision-Language Model developed by HCompany, fine-tuned from Qwen/Qwen2.5-VL-7B-Instruct.
209
+ It's designed to interact with web interfaces like a human user. Here, we demonstrate its UI localization capability.
210
+
211
+ **How to use:**
212
+ 1. Upload an image (e.g., a screenshot of a UI, like the calendar example).
213
+ 2. Provide a textual instruction (e.g., "Select July 14th as the check-out date").
214
+ 3. The model will predict the click coordinates in the format `Click(x, y)`.
215
+ 4. The predicted click point will be marked with a red circle on the (resized) image.
216
+
217
+ The model processes a resized version of your input image. Coordinates are relative to this resized image.
218
+ """
219
+ article = f"""
220
+ <p style='text-align: center'>
221
+ Model: <a href='https://huggingface.co/{MODEL_ID}' target='_blank'>{MODEL_ID}</a> by HCompany |
222
+ Paper: <a href='https://cdn.prod.website-files.com/67e2dbd9acff0c50d4c8a80c/683ec8095b353e8b38317f80_h_tech_report_v1.pdf' target='_blank'>HCompany Tech Report</a> |
223
+ Blog: <a href='https://www.hcompany.ai/surfer-h' target='_blank'>Surfer-H Blog Post</a>
224
+ </p>
225
+ """
226
+
227
+ if not model_loaded:
228
+ with gr.Blocks() as demo:
229
+ gr.Markdown(f"# <center>⚠️ Error: Model Failed to Load ⚠️</center>")
230
+ gr.Markdown(f"<center>{load_error_message}</center>")
231
+ gr.Markdown("<center>Please check the console output for more details. Reloading the space might help if it's a temporary issue.</center>")
232
+ else:
233
+ with gr.Blocks(theme=gr.themes.Soft()) as demo:
234
+ gr.Markdown(f"<h1 style='text-align: center;'>{title}</h1>")
235
+ # gr.Markdown(description)
236
+
237
+ with gr.Row():
238
+ with gr.Column(scale=1):
239
+ input_image_component = gr.Image(type="pil", label="Input UI Image", height=400)
240
+ instruction_component = gr.Textbox(
241
+ label="Instruction",
242
+ placeholder="e.g., Click the 'Login' button",
243
+ info="Type the action you want the model to localize on the image."
244
+ )
245
+ submit_button = gr.Button("Localize Click", variant="primary")
246
+
247
+ with gr.Column(scale=1):
248
+ output_coords_component = gr.Textbox(label="Predicted Coordinates (Format: Click(x,y))", interactive=False)
249
+ output_image_component = gr.Image(type="pil", label="Image with Predicted Click Point", height=400, interactive=False)
250
+
251
+ if example_image:
252
+ gr.Examples(
253
+ examples=[[example_image, example_instruction]],
254
+ inputs=[input_image_component, instruction_component],
255
+ outputs=[output_coords_component, output_image_component],
256
+ fn=predict_click_location,
257
+ cache_examples="lazy",
258
+ )
259
+
260
+ gr.Markdown(article)
261
+
262
+ submit_button.click(
263
+ fn=predict_click_location,
264
+ inputs=[input_image_component, instruction_component],
265
+ outputs=[output_coords_component, output_image_component]
266
+ )
267
+
268
+ if __name__ == "__main__":
269
+ demo.launch(debug=True)
commit ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ git add .
2
+ git commit -m "$*"
3
+ git push
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ transformers
2
+ accelerate
test ADDED
File without changes