Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,7 @@
|
|
1 |
-
import subprocess
|
2 |
-
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
3 |
-
|
4 |
import gradio as gr
|
5 |
import json
|
6 |
import os
|
7 |
-
from typing import Any, List
|
8 |
import spaces
|
9 |
|
10 |
from PIL import Image, ImageDraw
|
@@ -12,104 +9,161 @@ import requests
|
|
12 |
from transformers import AutoModelForImageTextToText, AutoProcessor
|
13 |
from transformers.models.qwen2_vl.image_processing_qwen2_vl import smart_resize
|
14 |
import torch
|
15 |
-
import re
|
|
|
16 |
|
17 |
# --- Configuration ---
|
18 |
MODEL_ID = "Hcompany/Holo1-7B"
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
# --- Model and Processor Loading (Load once) ---
|
21 |
-
print(f"Loading model and processor for {MODEL_ID}...")
|
22 |
model = None
|
23 |
processor = None
|
24 |
model_loaded = False
|
25 |
load_error_message = ""
|
26 |
|
27 |
try:
|
|
|
28 |
model = AutoModelForImageTextToText.from_pretrained(
|
29 |
MODEL_ID,
|
30 |
-
torch_dtype=torch.
|
31 |
-
trust_remote_code=True
|
32 |
-
).to(
|
33 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
34 |
model_loaded = True
|
35 |
print("Model and processor loaded successfully.")
|
36 |
except Exception as e:
|
37 |
-
load_error_message =
|
38 |
-
|
39 |
-
|
|
|
|
|
40 |
print(load_error_message)
|
|
|
41 |
|
42 |
-
# ---
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
"""
|
50 |
-
guidelines: str = "Localize an element on the GUI image according to my instructions and output a click position as Click(x, y) with x num pixels from the left edge and y num pixels from the top edge."
|
51 |
-
|
52 |
return [
|
53 |
{
|
54 |
"role": "user",
|
55 |
"content": [
|
56 |
-
{
|
57 |
-
|
58 |
-
"image": pil_image,
|
59 |
-
},
|
60 |
-
{"type": "text", "text": f"{guidelines}\n{instruction}"},
|
61 |
],
|
62 |
}
|
63 |
]
|
64 |
|
65 |
-
|
66 |
def run_inference_localization(
|
67 |
-
messages_for_template: List[dict[str, Any]],
|
68 |
pil_image_for_processing: Image.Image
|
69 |
) -> str:
|
70 |
-
model.to("cuda")
|
71 |
-
torch.cuda.set_device(0)
|
72 |
"""
|
73 |
-
|
74 |
-
- messages_for_template: The prompt structure, potentially including the PIL image object
|
75 |
-
(which apply_chat_template converts to an image tag).
|
76 |
-
- pil_image_for_processing: The actual PIL image to be processed into tensors.
|
77 |
"""
|
78 |
-
|
79 |
-
|
80 |
-
text_prompt = processor.apply_chat_template(
|
81 |
-
messages_for_template,
|
82 |
-
tokenize=False,
|
83 |
-
add_generation_prompt=True
|
84 |
-
)
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
)
|
110 |
-
|
111 |
-
return decoded_output[0] if decoded_output else ""
|
112 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
|
114 |
# --- Gradio processing function ---
|
115 |
def predict_click_location(input_pil_image: Image.Image, instruction: str):
|
@@ -120,68 +174,52 @@ def predict_click_location(input_pil_image: Image.Image, instruction: str):
|
|
120 |
if not instruction or instruction.strip() == "":
|
121 |
return "No instruction provided. Please type an instruction.", input_pil_image.copy().convert("RGB")
|
122 |
|
123 |
-
# 1
|
124 |
-
# This ensures predicted coordinates match the (resized) image dimensions.
|
125 |
-
image_proc_config = processor.image_processor
|
126 |
try:
|
|
|
127 |
resized_height, resized_width = smart_resize(
|
128 |
input_pil_image.height,
|
129 |
input_pil_image.width,
|
130 |
-
factor=
|
131 |
-
min_pixels=
|
132 |
-
max_pixels=
|
133 |
)
|
134 |
-
# Using LANCZOS for resampling as it's generally good for downscaling.
|
135 |
-
# The model card used `resample=None`, which might imply nearest or default.
|
136 |
-
# For visual quality in the demo, LANCZOS is reasonable.
|
137 |
resized_image = input_pil_image.resize(
|
138 |
-
size=(resized_width, resized_height),
|
139 |
-
resample=Image.Resampling.LANCZOS
|
140 |
)
|
141 |
except Exception as e:
|
142 |
print(f"Error resizing image: {e}")
|
|
|
143 |
return f"Error resizing image: {e}", input_pil_image.copy().convert("RGB")
|
144 |
|
145 |
-
# 2
|
146 |
messages = get_localization_prompt(resized_image, instruction)
|
147 |
|
148 |
-
# 3
|
149 |
-
# Pass `messages` (which includes the image object for template processing)
|
150 |
-
# and `resized_image` (for actual tensor conversion).
|
151 |
try:
|
152 |
coordinates_str = run_inference_localization(messages, resized_image)
|
153 |
except Exception as e:
|
154 |
-
print(f"Error during model inference: {e}")
|
155 |
return f"Error during model inference: {e}", resized_image.copy().convert("RGB")
|
156 |
|
157 |
-
# 4
|
158 |
-
output_image_with_click = resized_image.copy().convert("RGB")
|
159 |
-
parsed_coords = None
|
160 |
-
|
161 |
-
# Expected format from the model: "Click(x, y)"
|
162 |
match = re.search(r"Click\((\d+),\s*(\d+)\)", coordinates_str)
|
163 |
if match:
|
164 |
try:
|
165 |
x = int(match.group(1))
|
166 |
y = int(match.group(2))
|
167 |
-
parsed_coords = (x, y)
|
168 |
-
|
169 |
draw = ImageDraw.Draw(output_image_with_click)
|
170 |
-
|
171 |
-
radius = max(5, min(resized_width // 100, resized_height // 100, 15))
|
172 |
-
|
173 |
-
# Define the bounding box for the ellipse (circle)
|
174 |
bbox = (x - radius, y - radius, x + radius, y + radius)
|
175 |
-
draw.ellipse(bbox, outline="red", width=max(2, radius // 4))
|
176 |
print(f"Predicted and drawn click at: ({x}, {y}) on resized image ({resized_width}x{resized_height})")
|
177 |
-
except ValueError:
|
178 |
-
print(f"Could not parse integers from coordinates: {coordinates_str}")
|
179 |
-
# Keep original coordinates_str, output_image_with_click will be the resized image without a mark
|
180 |
except Exception as e:
|
181 |
print(f"Error drawing on image: {e}")
|
|
|
182 |
else:
|
183 |
print(f"Could not parse 'Click(x, y)' from model output: {coordinates_str}")
|
184 |
-
|
185 |
return coordinates_str, output_image_with_click
|
186 |
|
187 |
# --- Load Example Data ---
|
@@ -192,32 +230,19 @@ try:
|
|
192 |
example_image = Image.open(requests.get(example_image_url, stream=True).raw)
|
193 |
except Exception as e:
|
194 |
print(f"Could not load example image from URL: {e}")
|
195 |
-
|
196 |
try:
|
197 |
example_image = Image.new("RGB", (200, 150), color="lightgray")
|
198 |
draw = ImageDraw.Draw(example_image)
|
199 |
draw.text((10, 10), "Example image\nfailed to load", fill="black")
|
200 |
-
except:
|
201 |
-
pass
|
202 |
-
|
203 |
|
204 |
-
# --- Gradio
|
205 |
-
title = "Holo1-7B: Action VLM Localization Demo"
|
206 |
-
description = """
|
207 |
-
This demo showcases **Holo1-7B**, an Action Vision-Language Model developed by HCompany, fine-tuned from Qwen/Qwen2.5-VL-7B-Instruct.
|
208 |
-
It's designed to interact with web interfaces like a human user. Here, we demonstrate its UI localization capability.
|
209 |
-
|
210 |
-
**How to use:**
|
211 |
-
1. Upload an image (e.g., a screenshot of a UI, like the calendar example).
|
212 |
-
2. Provide a textual instruction (e.g., "Select July 14th as the check-out date").
|
213 |
-
3. The model will predict the click coordinates in the format `Click(x, y)`.
|
214 |
-
4. The predicted click point will be marked with a red circle on the (resized) image.
|
215 |
-
|
216 |
-
The model processes a resized version of your input image. Coordinates are relative to this resized image.
|
217 |
-
"""
|
218 |
article = f"""
|
219 |
<p style='text-align: center'>
|
220 |
-
Model: <a href='https://huggingface.co/{MODEL_ID}' target='_blank'>{MODEL_ID}</a> by HCompany |
|
221 |
Paper: <a href='https://cdn.prod.website-files.com/67e2dbd9acff0c50d4c8a80c/683ec8095b353e8b38317f80_h_tech_report_v1.pdf' target='_blank'>HCompany Tech Report</a> |
|
222 |
Blog: <a href='https://www.hcompany.ai/surfer-h' target='_blank'>Surfer-H Blog Post</a>
|
223 |
</p>
|
@@ -227,26 +252,33 @@ if not model_loaded:
|
|
227 |
with gr.Blocks() as demo:
|
228 |
gr.Markdown(f"# <center>⚠️ Error: Model Failed to Load ⚠️</center>")
|
229 |
gr.Markdown(f"<center>{load_error_message}</center>")
|
230 |
-
gr.Markdown("<center>
|
231 |
else:
|
232 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
233 |
gr.Markdown(f"<h1 style='text-align: center;'>{title}</h1>")
|
234 |
-
# gr.Markdown(description)
|
235 |
|
236 |
with gr.Row():
|
237 |
with gr.Column(scale=1):
|
238 |
input_image_component = gr.Image(type="pil", label="Input UI Image", height=400)
|
239 |
instruction_component = gr.Textbox(
|
240 |
-
label="Instruction",
|
241 |
placeholder="e.g., Click the 'Login' button",
|
242 |
info="Type the action you want the model to localize on the image."
|
243 |
)
|
244 |
submit_button = gr.Button("Localize Click", variant="primary")
|
245 |
-
|
246 |
with gr.Column(scale=1):
|
247 |
-
output_coords_component = gr.Textbox(
|
248 |
-
|
249 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
250 |
if example_image:
|
251 |
gr.Examples(
|
252 |
examples=[[example_image, example_instruction]],
|
@@ -255,7 +287,7 @@ else:
|
|
255 |
fn=predict_click_location,
|
256 |
cache_examples="lazy",
|
257 |
)
|
258 |
-
|
259 |
gr.Markdown(article)
|
260 |
|
261 |
submit_button.click(
|
@@ -265,4 +297,5 @@ else:
|
|
265 |
)
|
266 |
|
267 |
if __name__ == "__main__":
|
268 |
-
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import json
|
3 |
import os
|
4 |
+
from typing import Any, List, Dict
|
5 |
import spaces
|
6 |
|
7 |
from PIL import Image, ImageDraw
|
|
|
9 |
from transformers import AutoModelForImageTextToText, AutoProcessor
|
10 |
from transformers.models.qwen2_vl.image_processing_qwen2_vl import smart_resize
|
11 |
import torch
|
12 |
+
import re
|
13 |
+
import traceback
|
14 |
|
15 |
# --- Configuration ---
|
16 |
MODEL_ID = "Hcompany/Holo1-7B"
|
17 |
|
18 |
+
# --- Helpers (robust across different transformers versions) ---
|
19 |
+
|
20 |
+
def pick_device() -> str:
|
21 |
+
# Force CPU per request
|
22 |
+
return "cpu"
|
23 |
+
|
24 |
+
def apply_chat_template_compat(processor, messages: List[Dict[str, Any]]) -> str:
|
25 |
+
"""
|
26 |
+
Works whether apply_chat_template lives on the processor or tokenizer,
|
27 |
+
or not at all (falls back to naive text join of 'text' contents).
|
28 |
+
"""
|
29 |
+
tok = getattr(processor, "tokenizer", None)
|
30 |
+
if hasattr(processor, "apply_chat_template"):
|
31 |
+
return processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
32 |
+
if tok is not None and hasattr(tok, "apply_chat_template"):
|
33 |
+
return tok.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
34 |
+
# Fallback: concatenate visible text segments
|
35 |
+
texts = []
|
36 |
+
for m in messages:
|
37 |
+
for c in m.get("content", []):
|
38 |
+
if isinstance(c, dict) and c.get("type") == "text":
|
39 |
+
texts.append(c.get("text", ""))
|
40 |
+
return "\n".join(texts)
|
41 |
+
|
42 |
+
def batch_decode_compat(processor, token_id_batches, **kw):
|
43 |
+
tok = getattr(processor, "tokenizer", None)
|
44 |
+
if tok is not None and hasattr(tok, "batch_decode"):
|
45 |
+
return tok.batch_decode(token_id_batches, **kw)
|
46 |
+
if hasattr(processor, "batch_decode"):
|
47 |
+
return processor.batch_decode(token_id_batches, **kw)
|
48 |
+
raise AttributeError("No batch_decode available on processor or tokenizer.")
|
49 |
+
|
50 |
+
def get_image_proc_params(processor) -> Dict[str, int]:
|
51 |
+
"""
|
52 |
+
Safely access image processor params with defaults that work for Qwen2-VL family.
|
53 |
+
"""
|
54 |
+
ip = getattr(processor, "image_processor", None)
|
55 |
+
return {
|
56 |
+
"patch_size": getattr(ip, "patch_size", 14),
|
57 |
+
"merge_size": getattr(ip, "merge_size", 1),
|
58 |
+
"min_pixels": getattr(ip, "min_pixels", 256 * 256),
|
59 |
+
"max_pixels": getattr(ip, "max_pixels", 1280 * 1280),
|
60 |
+
}
|
61 |
+
|
62 |
+
def trim_generated(generated_ids, inputs):
|
63 |
+
"""
|
64 |
+
Trim prompt tokens from generated tokens when input_ids exist.
|
65 |
+
"""
|
66 |
+
in_ids = getattr(inputs, "input_ids", None)
|
67 |
+
if in_ids is None and isinstance(inputs, dict):
|
68 |
+
in_ids = inputs.get("input_ids", None)
|
69 |
+
if in_ids is None:
|
70 |
+
return [out_ids for out_ids in generated_ids]
|
71 |
+
return [out_ids[len(in_seq):] for in_seq, out_ids in zip(in_ids, generated_ids)]
|
72 |
+
|
73 |
# --- Model and Processor Loading (Load once) ---
|
74 |
+
print(f"Loading model and processor for {MODEL_ID} (CPU only)...")
|
75 |
model = None
|
76 |
processor = None
|
77 |
model_loaded = False
|
78 |
load_error_message = ""
|
79 |
|
80 |
try:
|
81 |
+
# CPU-friendly dtype; bf16 on CPU is spotty, so prefer float32
|
82 |
model = AutoModelForImageTextToText.from_pretrained(
|
83 |
MODEL_ID,
|
84 |
+
torch_dtype=torch.float32,
|
85 |
+
trust_remote_code=True
|
86 |
+
).to(pick_device())
|
87 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
88 |
model_loaded = True
|
89 |
print("Model and processor loaded successfully.")
|
90 |
except Exception as e:
|
91 |
+
load_error_message = (
|
92 |
+
f"Error loading model/processor: {e}\n"
|
93 |
+
"This might be due to network issues, an incorrect model ID, or incompatible library versions.\n"
|
94 |
+
"Check the full traceback in the Space logs."
|
95 |
+
)
|
96 |
print(load_error_message)
|
97 |
+
traceback.print_exc()
|
98 |
|
99 |
+
# --- Prompt builder ---
|
100 |
+
def get_localization_prompt(pil_image: Image.Image, instruction: str) -> List[dict]:
|
101 |
+
guidelines: str = (
|
102 |
+
"Localize an element on the GUI image according to my instructions and "
|
103 |
+
"output a click position as Click(x, y) with x num pixels from the left edge "
|
104 |
+
"and y num pixels from the top edge."
|
105 |
+
)
|
|
|
|
|
|
|
106 |
return [
|
107 |
{
|
108 |
"role": "user",
|
109 |
"content": [
|
110 |
+
{"type": "image", "image": pil_image},
|
111 |
+
{"type": "text", "text": f"{guidelines}\n{instruction}"}
|
|
|
|
|
|
|
112 |
],
|
113 |
}
|
114 |
]
|
115 |
|
116 |
+
# --- Inference (CPU) ---
|
117 |
def run_inference_localization(
|
118 |
+
messages_for_template: List[dict[str, Any]],
|
119 |
pil_image_for_processing: Image.Image
|
120 |
) -> str:
|
|
|
|
|
121 |
"""
|
122 |
+
CPU inference; robust to processor/tokenizer differences and logs full traceback on failure.
|
|
|
|
|
|
|
123 |
"""
|
124 |
+
try:
|
125 |
+
model.to(pick_device())
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
+
# 1) Build prompt text via robust helper
|
128 |
+
text_prompt = apply_chat_template_compat(processor, messages_for_template)
|
129 |
+
|
130 |
+
# 2) Prepare inputs (text + image)
|
131 |
+
inputs = processor(
|
132 |
+
text=[text_prompt],
|
133 |
+
images=[pil_image_for_processing],
|
134 |
+
padding=True,
|
135 |
+
return_tensors="pt",
|
136 |
+
)
|
137 |
+
|
138 |
+
# Move tensor inputs to the same device as model (CPU)
|
139 |
+
if isinstance(inputs, dict):
|
140 |
+
for k, v in list(inputs.items()):
|
141 |
+
if hasattr(v, "to"):
|
142 |
+
inputs[k] = v.to(model.device)
|
143 |
+
|
144 |
+
# 3) Generate (deterministic)
|
145 |
+
generated_ids = model.generate(
|
146 |
+
**inputs,
|
147 |
+
max_new_tokens=128,
|
148 |
+
do_sample=False,
|
149 |
+
)
|
|
|
|
|
|
|
150 |
|
151 |
+
# 4) Trim prompt tokens if possible
|
152 |
+
generated_ids_trimmed = trim_generated(generated_ids, inputs)
|
153 |
+
|
154 |
+
# 5) Decode via robust helper
|
155 |
+
decoded_output = batch_decode_compat(
|
156 |
+
processor,
|
157 |
+
generated_ids_trimmed,
|
158 |
+
skip_special_tokens=True,
|
159 |
+
clean_up_tokenization_spaces=False
|
160 |
+
)
|
161 |
+
|
162 |
+
return decoded_output[0] if decoded_output else ""
|
163 |
+
except Exception as e:
|
164 |
+
print(f"Error during model inference: {e}")
|
165 |
+
traceback.print_exc()
|
166 |
+
raise
|
167 |
|
168 |
# --- Gradio processing function ---
|
169 |
def predict_click_location(input_pil_image: Image.Image, instruction: str):
|
|
|
174 |
if not instruction or instruction.strip() == "":
|
175 |
return "No instruction provided. Please type an instruction.", input_pil_image.copy().convert("RGB")
|
176 |
|
177 |
+
# 1) Resize according to image processor params (safe defaults if missing)
|
|
|
|
|
178 |
try:
|
179 |
+
ip = get_image_proc_params(processor)
|
180 |
resized_height, resized_width = smart_resize(
|
181 |
input_pil_image.height,
|
182 |
input_pil_image.width,
|
183 |
+
factor=ip["patch_size"] * ip["merge_size"],
|
184 |
+
min_pixels=ip["min_pixels"],
|
185 |
+
max_pixels=ip["max_pixels"],
|
186 |
)
|
|
|
|
|
|
|
187 |
resized_image = input_pil_image.resize(
|
188 |
+
size=(resized_width, resized_height),
|
189 |
+
resample=Image.Resampling.LANCZOS
|
190 |
)
|
191 |
except Exception as e:
|
192 |
print(f"Error resizing image: {e}")
|
193 |
+
traceback.print_exc()
|
194 |
return f"Error resizing image: {e}", input_pil_image.copy().convert("RGB")
|
195 |
|
196 |
+
# 2) Build messages with image + instruction
|
197 |
messages = get_localization_prompt(resized_image, instruction)
|
198 |
|
199 |
+
# 3) Run inference
|
|
|
|
|
200 |
try:
|
201 |
coordinates_str = run_inference_localization(messages, resized_image)
|
202 |
except Exception as e:
|
|
|
203 |
return f"Error during model inference: {e}", resized_image.copy().convert("RGB")
|
204 |
|
205 |
+
# 4) Parse coordinates and draw marker
|
206 |
+
output_image_with_click = resized_image.copy().convert("RGB")
|
|
|
|
|
|
|
207 |
match = re.search(r"Click\((\d+),\s*(\d+)\)", coordinates_str)
|
208 |
if match:
|
209 |
try:
|
210 |
x = int(match.group(1))
|
211 |
y = int(match.group(2))
|
|
|
|
|
212 |
draw = ImageDraw.Draw(output_image_with_click)
|
213 |
+
radius = max(5, min(resized_width // 100, resized_height // 100, 15))
|
|
|
|
|
|
|
214 |
bbox = (x - radius, y - radius, x + radius, y + radius)
|
215 |
+
draw.ellipse(bbox, outline="red", width=max(2, radius // 4))
|
216 |
print(f"Predicted and drawn click at: ({x}, {y}) on resized image ({resized_width}x{resized_height})")
|
|
|
|
|
|
|
217 |
except Exception as e:
|
218 |
print(f"Error drawing on image: {e}")
|
219 |
+
traceback.print_exc()
|
220 |
else:
|
221 |
print(f"Could not parse 'Click(x, y)' from model output: {coordinates_str}")
|
222 |
+
|
223 |
return coordinates_str, output_image_with_click
|
224 |
|
225 |
# --- Load Example Data ---
|
|
|
230 |
example_image = Image.open(requests.get(example_image_url, stream=True).raw)
|
231 |
except Exception as e:
|
232 |
print(f"Could not load example image from URL: {e}")
|
233 |
+
traceback.print_exc()
|
234 |
try:
|
235 |
example_image = Image.new("RGB", (200, 150), color="lightgray")
|
236 |
draw = ImageDraw.Draw(example_image)
|
237 |
draw.text((10, 10), "Example image\nfailed to load", fill="black")
|
238 |
+
except Exception:
|
239 |
+
pass
|
|
|
240 |
|
241 |
+
# --- Gradio UI ---
|
242 |
+
title = "Holo1-7B: Action VLM Localization Demo (CPU)"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
article = f"""
|
244 |
<p style='text-align: center'>
|
245 |
+
Model: <a href='https://huggingface.co/{MODEL_ID}' target='_blank'>{MODEL_ID}</a> by HCompany |
|
246 |
Paper: <a href='https://cdn.prod.website-files.com/67e2dbd9acff0c50d4c8a80c/683ec8095b353e8b38317f80_h_tech_report_v1.pdf' target='_blank'>HCompany Tech Report</a> |
|
247 |
Blog: <a href='https://www.hcompany.ai/surfer-h' target='_blank'>Surfer-H Blog Post</a>
|
248 |
</p>
|
|
|
252 |
with gr.Blocks() as demo:
|
253 |
gr.Markdown(f"# <center>⚠️ Error: Model Failed to Load ⚠️</center>")
|
254 |
gr.Markdown(f"<center>{load_error_message}</center>")
|
255 |
+
gr.Markdown("<center>See Space logs for the full traceback.</center>")
|
256 |
else:
|
257 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
258 |
gr.Markdown(f"<h1 style='text-align: center;'>{title}</h1>")
|
|
|
259 |
|
260 |
with gr.Row():
|
261 |
with gr.Column(scale=1):
|
262 |
input_image_component = gr.Image(type="pil", label="Input UI Image", height=400)
|
263 |
instruction_component = gr.Textbox(
|
264 |
+
label="Instruction",
|
265 |
placeholder="e.g., Click the 'Login' button",
|
266 |
info="Type the action you want the model to localize on the image."
|
267 |
)
|
268 |
submit_button = gr.Button("Localize Click", variant="primary")
|
269 |
+
|
270 |
with gr.Column(scale=1):
|
271 |
+
output_coords_component = gr.Textbox(
|
272 |
+
label="Predicted Coordinates (Format: Click(x, y))",
|
273 |
+
interactive=False
|
274 |
+
)
|
275 |
+
output_image_component = gr.Image(
|
276 |
+
type="pil",
|
277 |
+
label="Image with Predicted Click Point",
|
278 |
+
height=400,
|
279 |
+
interactive=False
|
280 |
+
)
|
281 |
+
|
282 |
if example_image:
|
283 |
gr.Examples(
|
284 |
examples=[[example_image, example_instruction]],
|
|
|
287 |
fn=predict_click_location,
|
288 |
cache_examples="lazy",
|
289 |
)
|
290 |
+
|
291 |
gr.Markdown(article)
|
292 |
|
293 |
submit_button.click(
|
|
|
297 |
)
|
298 |
|
299 |
if __name__ == "__main__":
|
300 |
+
# CPU Spaces can be slow; keep debug True for logs
|
301 |
+
demo.launch(debug=True)
|