from sentence_transformers import SentenceTransformer from fastapi import FastAPI from pydantic import BaseModel import torch app = FastAPI() model_name = "meedan/paraphrase-filipino-mpnet-base-v2" model = SentenceTransformer(model_name) class TextInput(BaseModel): text: str @app.post("/embed") def embed_text(input: TextInput): with torch.no_grad(): embedding = model.encode([input.text])[0].tolist() return {"embedding": embedding} @app.get("/") def read_root(): return f"Encode text to numerical vectors using sentence transformer: {model_name}"