File size: 6,908 Bytes
a4e3dc2
 
 
 
 
 
 
 
dd57b4e
a4e3dc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd57b4e
 
a4e3dc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd57b4e
 
 
a4e3dc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd57b4e
a4e3dc2
 
 
 
 
 
dd57b4e
 
 
a4e3dc2
 
 
 
 
 
 
 
dd57b4e
a4e3dc2
 
 
 
 
 
 
 
 
 
 
 
dd57b4e
a4e3dc2
dd57b4e
a4e3dc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd57b4e
a4e3dc2
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import os
import datetime
from zoneinfo import ZoneInfo
from typing import Optional, Tuple, List
import asyncio
import logging
from copy import deepcopy
import json
import uuid

import gradio as gr

from langchain.chat_models import ChatOpenAI
from langchain.chains import ConversationChain
from langchain.memory import ConversationTokenBufferMemory
from langchain.callbacks.streaming_aiter import AsyncIteratorCallbackHandler
from langchain.schema import BaseMessage
from langchain.prompts.chat import (
    ChatPromptTemplate,
    MessagesPlaceholder,
    SystemMessagePromptTemplate,
    HumanMessagePromptTemplate,
)

logging.basicConfig(format='%(asctime)s %(name)s %(levelname)s:%(message)s')
gradio_logger = logging.getLogger("gradio_app")
gradio_logger.setLevel(logging.INFO)
logging.getLogger("openai").setLevel(logging.DEBUG)

GPT_3_5_CONTEXT_LENGTH = 4096

def make_template():
    knowledge_cutoff = "September 2021"
    current_date = datetime.datetime.now(ZoneInfo("America/New_York")).strftime("%Y-%m-%d")
    system_msg = f"You are ChatGPT, a large language model trained by OpenAI. Answer as concisely as possible. Knowledge cutoff: {knowledge_cutoff} Current date: {current_date}"
    human_template = "{input}"
    return ChatPromptTemplate.from_messages([
        SystemMessagePromptTemplate.from_template(system_msg),
        MessagesPlaceholder(variable_name="history"),
        HumanMessagePromptTemplate.from_template(human_template)
    ])

def reset_textbox():
    return gr.update(value="")

def auth(username, password):
    return (username, password) in creds

async def respond(
    inp: str,
    state: Optional[Tuple[List,
                          ConversationTokenBufferMemory,
                          ConversationChain, 
                          str]],
    request: gr.Request
):
    """Execute the chat functionality."""

    def prep_messages(user_msg: str, memory_buffer: List[BaseMessage]) -> Tuple[str, List[BaseMessage]]:
        messages_to_send = template.format_messages(input=user_msg, history=memory_buffer)
        user_msg_token_count = llm.get_num_tokens_from_messages([messages_to_send[-1]])
        total_token_count = llm.get_num_tokens_from_messages(messages_to_send)
        _, encoding = llm._get_encoding_model()
        while user_msg_token_count > GPT_3_5_CONTEXT_LENGTH:
            gradio_logger.warning(f"Pruning user message due to user message token length of {user_msg_token_count}")
            user_msg = encoding.decode(llm.get_token_ids(user_msg)[:GPT_3_5_CONTEXT_LENGTH - 100])
            messages_to_send = template.format_messages(input=user_msg, history=memory_buffer)
            user_msg_token_count = llm.get_num_tokens_from_messages([messages_to_send[-1]])
            total_token_count = llm.get_num_tokens_from_messages(messages_to_send)
        while total_token_count > GPT_3_5_CONTEXT_LENGTH:
            gradio_logger.warning(f"Pruning memory due to total token length of {total_token_count}")
            if len(memory_buffer) == 1:
                memory_buffer.pop(0)
                continue
            memory_buffer = memory_buffer[1:]
            messages_to_send = template.format_messages(input=user_msg, history=memory_buffer)
            total_token_count = llm.get_num_tokens_from_messages(messages_to_send)
        return user_msg, memory_buffer

    try:
        if state is None:
            memory = ConversationTokenBufferMemory(
                llm=llm,
                max_token_limit=GPT_3_5_CONTEXT_LENGTH,
                return_messages=True)
            chain = ConversationChain(memory=memory, prompt=template, llm=llm)
            session_id = str(uuid.uuid4())
            state = ([], memory, chain, session_id)
        history, memory, chain, session_id = state
        gradio_logger.info(f"""[{request.username}] STARTING CHAIN""")
        gradio_logger.debug(f"History: {history}")
        gradio_logger.debug(f"User input: {inp}")
        inp, memory.chat_memory.messages = prep_messages(inp, memory.buffer)
        messages_to_send = template.format_messages(input=inp, history=memory.buffer)
        total_token_count = llm.get_num_tokens_from_messages(messages_to_send)
        gradio_logger.debug(f"Messages to send: {messages_to_send}")
        gradio_logger.info(f"Tokens to send: {total_token_count}")
        # Run chain and append input.
        callback = AsyncIteratorCallbackHandler()
        run = asyncio.create_task(chain.apredict(
            input=inp, callbacks=[callback]))
        history.append((inp, ""))
        async for tok in callback.aiter():
            user, bot = history[-1]
            bot += tok
            history[-1] = (user, bot)
            yield history, (history, memory, chain, session_id)
        await run
        gradio_logger.info(f"""[{request.username}] ENDING CHAIN""")
        gradio_logger.debug(f"History: {history}")
        gradio_logger.debug(f"Memory: {memory.json()}")
        data_to_flag = {
            "history": deepcopy(history),
            "username": request.username,
            "timestamp": datetime.datetime.now(datetime.timezone.utc).isoformat(),
            "session_id": session_id
        },
        gradio_logger.debug(f"Data to flag: {data_to_flag}")
        gradio_flagger.flag(flag_data=data_to_flag, username=request.username)
    except Exception as e:
        gradio_logger.exception(e)
        raise e

OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
HF_TOKEN = os.getenv("HF_TOKEN")

llm = ChatOpenAI(model_name="gpt-3.5-turbo",
                 temperature=1,
                 openai_api_key=OPENAI_API_KEY,
                 max_retries=6,
                 request_timeout=100,
                 streaming=True)

template = make_template()

theme = gr.themes.Soft()

creds = [(os.getenv("CHAT_USERNAME"), os.getenv("CHAT_PASSWORD"))]

gradio_flagger = gr.HuggingFaceDatasetSaver(HF_TOKEN, "chats")
title = "Chat with ChatGPT"

with gr.Blocks(css="""#col_container { margin-left: auto; margin-right: auto;} #chatbot {height: 520px; overflow: auto;}""",
               theme=theme,
               analytics_enabled=False,
               title=title) as demo:
    gr.HTML(title)
    with gr.Column(elem_id="col_container"):
        state = gr.State()
        chatbot = gr.Chatbot(label='ChatBot', elem_id="chatbot")
        inputs = gr.Textbox(placeholder="Send a message.",
                            label="Type an input and press Enter")
        b1 = gr.Button(value="Submit", variant="secondary").style(
            full_width=False)

    gradio_flagger.setup([chatbot], "chats")

    inputs.submit(respond, [inputs, state], [chatbot, state],)
    b1.click(respond, [inputs, state], [chatbot, state],)

    b1.click(reset_textbox, [], [inputs])
    inputs.submit(reset_textbox, [], [inputs])

demo.queue(
    max_size=99, 
    concurrency_count=20,
    api_open=False).launch(
    debug=True,
    auth=auth)