from huggingface_hub import hf_hub_download from llama_cpp import Llama import gradio as gr # Download the model from Hugging Face model_name = "johnpaulbin/articulate-V1-Q8_0-GGUF" model_file = "articulate-V1-Q8_0.gguf" # Replace with the actual GGUF file name from the repository model_path = hf_hub_download(repo_id=model_name, filename=model_file) # Initialize the Llama model with llama-cpp-python llm = Llama( model_path=model_path, n_ctx=1024, # Context length (adjust as needed) n_threads=2, # Number of CPU threads n_gpu_layers=0 # Run on CPU only (no GPU in free Spaces tier) ) # Define the chat function for Gradio def chat(message, history): # Build the message list with history and current user input messages = [] for user_msg, assistant_msg in history: messages.append({"role": "user", "content": user_msg}) messages.append({"role": "assistant", "content": assistant_msg}) messages.append({"role": "user", "content": message}) # Perform inference with greedy decoding response = llm.create_chat_completion( messages=messages, max_tokens=100, # Limit output length top_k=1, # Greedy decoding: select the top token temperature=0.01 # Low temperature for determinism (top_k=1 is sufficient) ) # Extract and return the generated text generated_text = response['choices'][0]['message']['content'] return generated_text # Create the Gradio ChatInterface iface = gr.ChatInterface( fn=chat, title="Articulate V1 Chatbot", description="Chat with the Articulate V1 model (Llama 3-based) using greedy decoding." ) # Launch the app iface.launch()