Spaces:
Sleeping
Sleeping
jomasego
commited on
Commit
Β·
c8a7e17
1
Parent(s):
b4c1755
Add MCP Video Analysis application with Claude AI integration
Browse files- README.md +30 -3
- app.py +340 -0
- requirements.txt +4 -0
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
colorFrom: purple
|
5 |
colorTo: blue
|
6 |
sdk: gradio
|
@@ -8,7 +8,34 @@ sdk_version: 5.33.1
|
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
-
short_description:
|
12 |
---
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: MCP Video Analysis with Claude AI
|
3 |
+
emoji: π₯
|
4 |
colorFrom: purple
|
5 |
colorTo: blue
|
6 |
sdk: gradio
|
|
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
+
short_description: Intelligent video content analysis powered by Modal backend and Anthropic Claude
|
12 |
---
|
13 |
|
14 |
+
# π₯ MCP Video Analysis with Claude AI
|
15 |
+
|
16 |
+
This application provides comprehensive video analysis using the Model Context Protocol (MCP) to integrate multiple AI technologies:
|
17 |
+
|
18 |
+
## π§ Technology Stack
|
19 |
+
- **Modal Backend**: Scalable cloud compute for video processing
|
20 |
+
- **Whisper**: Speech-to-text transcription
|
21 |
+
- **Computer Vision Models**: Object detection, action recognition, and captioning
|
22 |
+
- **Anthropic Claude**: Advanced AI for intelligent content analysis
|
23 |
+
- **MCP Protocol**: Model Context Protocol for seamless integration
|
24 |
+
|
25 |
+
## π― Features
|
26 |
+
- **Transcription**: Extract spoken content from videos
|
27 |
+
- **Visual Analysis**: Identify objects, actions, and scenes
|
28 |
+
- **Content Understanding**: AI-powered insights and summaries
|
29 |
+
- **Custom Queries**: Ask specific questions about video content
|
30 |
+
|
31 |
+
## π Usage
|
32 |
+
1. Enter a video URL (YouTube or direct link)
|
33 |
+
2. Optionally ask a specific question
|
34 |
+
3. Click "Analyze Video" to get comprehensive insights
|
35 |
+
4. Review both Claude's intelligent analysis and raw data
|
36 |
+
|
37 |
+
## π Environment Variables Required
|
38 |
+
- `ANTHROPIC_API_KEY`: Your Anthropic API key for Claude integration
|
39 |
+
- `MODAL_VIDEO_ANALYSIS_ENDPOINT_URL`: Modal backend endpoint (optional, has default)
|
40 |
+
|
41 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,340 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
"""
|
3 |
+
MCP Video Analysis Client with Anthropic Integration
|
4 |
+
|
5 |
+
This application serves as an MCP (Model Context Protocol) client that:
|
6 |
+
1. Connects to video analysis tools via MCP
|
7 |
+
2. Integrates with Anthropic's Claude for intelligent video understanding
|
8 |
+
3. Provides a Gradio interface for user interaction
|
9 |
+
"""
|
10 |
+
|
11 |
+
import os
|
12 |
+
import json
|
13 |
+
import asyncio
|
14 |
+
import logging
|
15 |
+
from typing import Dict, Any, List, Optional
|
16 |
+
import gradio as gr
|
17 |
+
import httpx
|
18 |
+
from anthropic import Anthropic
|
19 |
+
|
20 |
+
# Configure logging
|
21 |
+
logging.basicConfig(level=logging.INFO)
|
22 |
+
logger = logging.getLogger(__name__)
|
23 |
+
|
24 |
+
class MCPVideoAnalysisClient:
|
25 |
+
"""MCP Client for video analysis with Anthropic integration."""
|
26 |
+
|
27 |
+
def __init__(self):
|
28 |
+
# Initialize Anthropic client
|
29 |
+
self.anthropic_api_key = os.getenv("ANTHROPIC_API_KEY")
|
30 |
+
if not self.anthropic_api_key:
|
31 |
+
raise ValueError("ANTHROPIC_API_KEY environment variable is required")
|
32 |
+
|
33 |
+
self.anthropic_client = Anthropic(api_key=self.anthropic_api_key)
|
34 |
+
|
35 |
+
# Modal backend endpoint
|
36 |
+
self.modal_endpoint = os.getenv(
|
37 |
+
"MODAL_VIDEO_ANALYSIS_ENDPOINT_URL",
|
38 |
+
"https://jomasego--video-analysis-gradio-pipeline-process-video-analysis.modal.run"
|
39 |
+
)
|
40 |
+
|
41 |
+
logger.info(f"Initialized MCP Video Analysis Client with Modal endpoint: {self.modal_endpoint}")
|
42 |
+
|
43 |
+
async def analyze_video_with_modal(self, video_url: str) -> Dict[str, Any]:
|
44 |
+
"""Call the Modal backend for comprehensive video analysis."""
|
45 |
+
try:
|
46 |
+
async with httpx.AsyncClient(timeout=300.0) as client:
|
47 |
+
logger.info(f"Calling Modal backend for video analysis: {video_url}")
|
48 |
+
response = await client.post(
|
49 |
+
self.modal_endpoint,
|
50 |
+
json={"video_url": video_url},
|
51 |
+
headers={"Content-Type": "application/json"}
|
52 |
+
)
|
53 |
+
response.raise_for_status()
|
54 |
+
return response.json()
|
55 |
+
except Exception as e:
|
56 |
+
logger.error(f"Error calling Modal backend: {e}")
|
57 |
+
return {"error": f"Modal backend error: {str(e)}"}
|
58 |
+
|
59 |
+
def enhance_analysis_with_claude(self, video_analysis: Dict[str, Any], user_query: str = None) -> str:
|
60 |
+
"""Use Claude to provide intelligent insights about the video analysis."""
|
61 |
+
|
62 |
+
# Prepare the analysis data for Claude
|
63 |
+
analysis_summary = self._format_analysis_for_claude(video_analysis)
|
64 |
+
|
65 |
+
# Create the prompt for Claude
|
66 |
+
system_prompt = """You are an expert video analyst with deep knowledge of multimedia content, storytelling, and visual communication. You excel at interpreting video analysis data and providing meaningful insights.
|
67 |
+
|
68 |
+
Your task is to analyze the provided video analysis data and give intelligent, actionable insights. Focus on:
|
69 |
+
1. Content understanding and themes
|
70 |
+
2. Visual storytelling elements
|
71 |
+
3. Technical quality assessment
|
72 |
+
4. Audience engagement potential
|
73 |
+
5. Key moments and highlights
|
74 |
+
6. Contextual relevance
|
75 |
+
|
76 |
+
Be concise but thorough, and tailor your response to be useful for content creators, marketers, or researchers."""
|
77 |
+
|
78 |
+
if user_query:
|
79 |
+
user_prompt = f"""Here is the video analysis data:
|
80 |
+
|
81 |
+
{analysis_summary}
|
82 |
+
|
83 |
+
User's specific question: {user_query}
|
84 |
+
|
85 |
+
Please provide a comprehensive analysis addressing the user's question while incorporating insights from all the available data."""
|
86 |
+
else:
|
87 |
+
user_prompt = f"""Here is the video analysis data:
|
88 |
+
|
89 |
+
{analysis_summary}
|
90 |
+
|
91 |
+
Please provide a comprehensive analysis of this video, highlighting the most important insights and potential applications."""
|
92 |
+
|
93 |
+
try:
|
94 |
+
response = self.anthropic_client.messages.create(
|
95 |
+
model="claude-3-5-sonnet-20241022",
|
96 |
+
max_tokens=2000,
|
97 |
+
temperature=0.3,
|
98 |
+
system=system_prompt,
|
99 |
+
messages=[{"role": "user", "content": user_prompt}]
|
100 |
+
)
|
101 |
+
|
102 |
+
return response.content[0].text
|
103 |
+
|
104 |
+
except Exception as e:
|
105 |
+
logger.error(f"Error calling Anthropic API: {e}")
|
106 |
+
return f"Error generating Claude analysis: {str(e)}"
|
107 |
+
|
108 |
+
def _format_analysis_for_claude(self, analysis: Dict[str, Any]) -> str:
|
109 |
+
"""Format the video analysis data for Claude consumption."""
|
110 |
+
formatted = []
|
111 |
+
|
112 |
+
# Handle transcription
|
113 |
+
if "transcription" in analysis:
|
114 |
+
transcription = analysis["transcription"]
|
115 |
+
if isinstance(transcription, str) and not transcription.startswith("Error"):
|
116 |
+
formatted.append(f"**TRANSCRIPTION:**\n{transcription}\n")
|
117 |
+
else:
|
118 |
+
formatted.append(f"**TRANSCRIPTION:** {transcription}\n")
|
119 |
+
|
120 |
+
# Handle caption
|
121 |
+
if "caption" in analysis:
|
122 |
+
caption = analysis["caption"]
|
123 |
+
if isinstance(caption, str) and not caption.startswith("Error"):
|
124 |
+
formatted.append(f"**VIDEO CAPTION:**\n{caption}\n")
|
125 |
+
else:
|
126 |
+
formatted.append(f"**VIDEO CAPTION:** {caption}\n")
|
127 |
+
|
128 |
+
# Handle actions
|
129 |
+
if "actions" in analysis:
|
130 |
+
actions = analysis["actions"]
|
131 |
+
if isinstance(actions, list) and actions:
|
132 |
+
action_text = []
|
133 |
+
for action in actions:
|
134 |
+
if isinstance(action, dict):
|
135 |
+
if "error" in action:
|
136 |
+
action_text.append(f"Error: {action['error']}")
|
137 |
+
else:
|
138 |
+
# Format action detection results
|
139 |
+
action_text.append(str(action))
|
140 |
+
else:
|
141 |
+
action_text.append(str(action))
|
142 |
+
formatted.append(f"**ACTION RECOGNITION:**\n{'; '.join(action_text)}\n")
|
143 |
+
else:
|
144 |
+
formatted.append(f"**ACTION RECOGNITION:** {actions}\n")
|
145 |
+
|
146 |
+
# Handle objects
|
147 |
+
if "objects" in analysis:
|
148 |
+
objects = analysis["objects"]
|
149 |
+
if isinstance(objects, list) and objects:
|
150 |
+
object_text = []
|
151 |
+
for obj in objects:
|
152 |
+
if isinstance(obj, dict):
|
153 |
+
if "error" in obj:
|
154 |
+
object_text.append(f"Error: {obj['error']}")
|
155 |
+
else:
|
156 |
+
# Format object detection results
|
157 |
+
object_text.append(str(obj))
|
158 |
+
else:
|
159 |
+
object_text.append(str(obj))
|
160 |
+
formatted.append(f"**OBJECT DETECTION:**\n{'; '.join(object_text)}\n")
|
161 |
+
else:
|
162 |
+
formatted.append(f"**OBJECT DETECTION:** {objects}\n")
|
163 |
+
|
164 |
+
# Handle any errors
|
165 |
+
if "error" in analysis:
|
166 |
+
formatted.append(f"**ANALYSIS ERROR:**\n{analysis['error']}\n")
|
167 |
+
|
168 |
+
return "\n".join(formatted) if formatted else "No analysis data available."
|
169 |
+
|
170 |
+
async def process_video_request(self, video_url: str, user_query: str = None) -> tuple[str, str]:
|
171 |
+
"""Process a complete video analysis request with Claude enhancement."""
|
172 |
+
if not video_url or not video_url.strip():
|
173 |
+
return "Please provide a valid video URL.", ""
|
174 |
+
|
175 |
+
try:
|
176 |
+
# Step 1: Get video analysis from Modal backend
|
177 |
+
logger.info(f"Starting video analysis for: {video_url}")
|
178 |
+
video_analysis = await self.analyze_video_with_modal(video_url.strip())
|
179 |
+
|
180 |
+
# Step 2: Format the raw analysis for display
|
181 |
+
raw_analysis = json.dumps(video_analysis, indent=2)
|
182 |
+
|
183 |
+
# Step 3: Enhance with Claude insights
|
184 |
+
logger.info("Generating Claude insights...")
|
185 |
+
claude_insights = self.enhance_analysis_with_claude(video_analysis, user_query)
|
186 |
+
|
187 |
+
return claude_insights, raw_analysis
|
188 |
+
|
189 |
+
except Exception as e:
|
190 |
+
error_msg = f"Error processing video request: {str(e)}"
|
191 |
+
logger.error(error_msg)
|
192 |
+
return error_msg, ""
|
193 |
+
|
194 |
+
# Initialize the MCP client
|
195 |
+
try:
|
196 |
+
mcp_client = MCPVideoAnalysisClient()
|
197 |
+
logger.info("MCP Video Analysis Client initialized successfully")
|
198 |
+
except Exception as e:
|
199 |
+
logger.error(f"Failed to initialize MCP client: {e}")
|
200 |
+
mcp_client = None
|
201 |
+
|
202 |
+
# Gradio Interface Functions
|
203 |
+
async def analyze_video_interface(video_url: str, user_query: str = None) -> tuple[str, str]:
|
204 |
+
"""Gradio interface function for video analysis."""
|
205 |
+
if not mcp_client:
|
206 |
+
return "MCP Client not initialized. Please check your environment variables.", ""
|
207 |
+
|
208 |
+
return await mcp_client.process_video_request(video_url, user_query)
|
209 |
+
|
210 |
+
def create_gradio_interface():
|
211 |
+
"""Create and configure the Gradio interface."""
|
212 |
+
|
213 |
+
with gr.Blocks(
|
214 |
+
title="MCP Video Analysis with Claude",
|
215 |
+
theme=gr.themes.Soft(),
|
216 |
+
css="""
|
217 |
+
.gradio-container {
|
218 |
+
max-width: 1200px !important;
|
219 |
+
}
|
220 |
+
.main-header {
|
221 |
+
text-align: center;
|
222 |
+
margin-bottom: 30px;
|
223 |
+
}
|
224 |
+
.analysis-output {
|
225 |
+
max-height: 600px;
|
226 |
+
overflow-y: auto;
|
227 |
+
}
|
228 |
+
"""
|
229 |
+
) as interface:
|
230 |
+
|
231 |
+
gr.HTML("""
|
232 |
+
<div class="main-header">
|
233 |
+
<h1>π₯ MCP Video Analysis with Claude AI</h1>
|
234 |
+
<p>Intelligent video content analysis powered by Modal backend and Anthropic Claude</p>
|
235 |
+
</div>
|
236 |
+
""")
|
237 |
+
|
238 |
+
with gr.Tab("π Video Analysis"):
|
239 |
+
with gr.Row():
|
240 |
+
with gr.Column(scale=1):
|
241 |
+
video_url_input = gr.Textbox(
|
242 |
+
label="Video URL",
|
243 |
+
placeholder="Enter YouTube URL or direct video link...",
|
244 |
+
lines=2
|
245 |
+
)
|
246 |
+
user_query_input = gr.Textbox(
|
247 |
+
label="Specific Question (Optional)",
|
248 |
+
placeholder="Ask a specific question about the video...",
|
249 |
+
lines=2
|
250 |
+
)
|
251 |
+
|
252 |
+
with gr.Row():
|
253 |
+
analyze_btn = gr.Button("π Analyze Video", variant="primary", size="lg")
|
254 |
+
clear_btn = gr.Button("ποΈ Clear", variant="secondary")
|
255 |
+
|
256 |
+
with gr.Column(scale=2):
|
257 |
+
claude_output = gr.Textbox(
|
258 |
+
label="π€ Claude AI Insights",
|
259 |
+
lines=20,
|
260 |
+
elem_classes=["analysis-output"],
|
261 |
+
interactive=False
|
262 |
+
)
|
263 |
+
|
264 |
+
with gr.Row():
|
265 |
+
raw_analysis_output = gr.JSON(
|
266 |
+
label="π Raw Analysis Data",
|
267 |
+
elem_classes=["analysis-output"]
|
268 |
+
)
|
269 |
+
|
270 |
+
# Example videos
|
271 |
+
gr.HTML("<h3>π Example Videos to Try:</h3>")
|
272 |
+
with gr.Row():
|
273 |
+
example_urls = [
|
274 |
+
"https://www.youtube.com/watch?v=dQw4w9WgXcQ",
|
275 |
+
"https://www.youtube.com/watch?v=jNQXAC9IVRw",
|
276 |
+
"https://www.youtube.com/watch?v=9bZkp7q19f0"
|
277 |
+
]
|
278 |
+
for i, url in enumerate(example_urls, 1):
|
279 |
+
gr.Button(f"Example {i}", size="sm").click(
|
280 |
+
lambda url=url: url, outputs=video_url_input
|
281 |
+
)
|
282 |
+
|
283 |
+
with gr.Tab("βΉοΈ About"):
|
284 |
+
gr.Markdown("""
|
285 |
+
## About MCP Video Analysis
|
286 |
+
|
287 |
+
This application combines multiple AI technologies to provide comprehensive video analysis:
|
288 |
+
|
289 |
+
### π§ Technology Stack
|
290 |
+
- **Modal Backend**: Scalable cloud compute for video processing
|
291 |
+
- **Whisper**: Speech-to-text transcription
|
292 |
+
- **Computer Vision Models**: Object detection, action recognition, and captioning
|
293 |
+
- **Anthropic Claude**: Advanced AI for intelligent content analysis
|
294 |
+
- **MCP Protocol**: Model Context Protocol for seamless integration
|
295 |
+
|
296 |
+
### π― Features
|
297 |
+
- **Transcription**: Extract spoken content from videos
|
298 |
+
- **Visual Analysis**: Identify objects, actions, and scenes
|
299 |
+
- **Content Understanding**: AI-powered insights and summaries
|
300 |
+
- **Custom Queries**: Ask specific questions about video content
|
301 |
+
|
302 |
+
### π Usage
|
303 |
+
1. Enter a video URL (YouTube or direct link)
|
304 |
+
2. Optionally ask a specific question
|
305 |
+
3. Click "Analyze Video" to get comprehensive insights
|
306 |
+
4. Review both Claude's intelligent analysis and raw data
|
307 |
+
|
308 |
+
### π Privacy & Security
|
309 |
+
- Video processing is handled securely in the cloud
|
310 |
+
- No video data is stored permanently
|
311 |
+
- API keys are handled securely via environment variables
|
312 |
+
""")
|
313 |
+
|
314 |
+
# Event handlers
|
315 |
+
def clear_all():
|
316 |
+
return "", "", "", ""
|
317 |
+
|
318 |
+
analyze_btn.click(
|
319 |
+
fn=analyze_video_interface,
|
320 |
+
inputs=[video_url_input, user_query_input],
|
321 |
+
outputs=[claude_output, raw_analysis_output],
|
322 |
+
show_progress=True
|
323 |
+
)
|
324 |
+
|
325 |
+
clear_btn.click(
|
326 |
+
fn=clear_all,
|
327 |
+
outputs=[video_url_input, user_query_input, claude_output, raw_analysis_output]
|
328 |
+
)
|
329 |
+
|
330 |
+
return interface
|
331 |
+
|
332 |
+
# Create and launch the interface
|
333 |
+
if __name__ == "__main__":
|
334 |
+
interface = create_gradio_interface()
|
335 |
+
interface.launch(
|
336 |
+
server_name="0.0.0.0",
|
337 |
+
server_port=7860,
|
338 |
+
share=False,
|
339 |
+
show_error=True
|
340 |
+
)
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio>=4.0.0
|
2 |
+
anthropic>=0.40.0
|
3 |
+
httpx>=0.25.0
|
4 |
+
asyncio-compat>=0.1.0
|