import streamlit as st from langchain_community.llms import HuggingFaceTextGenInference import os import io from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler from langchain.schema import StrOutputParser # from datetime import datetime from datetime import datetime, timezone, timedelta from custom_llm import CustomLLM, custom_chain_with_history from typing import Optional from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder from langchain_core.chat_history import BaseChatMessageHistory from langchain.memory import ConversationBufferMemory#, PostgresChatMessageHistory import psycopg2 import urllib.parse as up os.environ['LANGCHAIN_TRACING_V2'] = "true" API_TOKEN = os.getenv('HF_INFER_API') # POSTGRE_URL = os.environ['POSTGRE_URL'] @st.cache_resource def get_llm_chain(): return custom_chain_with_history( llm=CustomLLM(repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1", model_type='text-generation', api_token=API_TOKEN, stop=["\n<|","<|"], temperature=0.001), # llm=CustomLLM(repo_id="google/gemma-7b", model_type='text-generation', api_token=API_TOKEN, stop=["\n<|","<|"], temperature=0.001), # memory=st.session_state.memory.chat_memory, memory=st.session_state.memory ) # @st.cache_resource # def get_db_connection(conn_url, password=None): # url = up.urlparse(conn_url) # conn = psycopg2.connect( # database=url.path[1:], # user=url.username, # password=password if password is not None else url.password, # host=url.hostname, # port=url.port # ) # print("Connection to database succesfull!") # return conn # @st.cache_resource # def get_memory(): # return PostgresChatMessageHistory(connection_string=POSTGRE_URL, session_id=str(datetime.timestamp(datetime.now()))) # if 'conn' not in st.session_state: # st.session_state.conn = get_db_connection(POSTGRE_URL) # if 'cursor' not in st.session_state: # st.session_state.cursor = st.session_state.conn.cursor() if 'memory' not in st.session_state: st.session_state['memory'] = ConversationBufferMemory(return_messages=True) # st.session_state.memory = PostgresChatMessageHistory(connection_string=POSTGRE_URL, session_id=str(datetime.timestamp(datetime.now()))) # st.session_state.memory = get_memory() st.session_state.memory.chat_memory.add_ai_message("Hello, My name is Jonathan Jordan. You can call me Jojo. How can I help you today?") # st.session_state.memory.add_ai_message("Hello, My name is Jonathan Jordan. You can call me Jojo. How can I help you today?") if 'chain' not in st.session_state: # st.session_state['chain'] = custom_chain_with_history( # llm=CustomLLM(repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1", model_type='text-generation', api_token=API_TOKEN, stop=["\n<|","<|"], temperature=0.001), # memory=st.session_state.memory.chat_memory, # # memory=st.session_state.memory # ) st.session_state['chain'] = get_llm_chain() st.title("Chat With Me") st.subheader("by Jonathan Jordan") st.markdown("""

Note : This conversation will be recorded in our private Database, thank you :)

""", unsafe_allow_html=True) # Initialize chat history if "messages" not in st.session_state: st.session_state.messages = [{"role":"assistant", "content":"Hello, My name is Jonathan Jordan. You can call me Jojo. How can I help you today?"}] # Display chat messages from history on app rerun for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) # React to user input if prompt := st.chat_input("Ask me anything.."): # Display user message in chat message container st.chat_message("User").markdown(prompt) # Add user message to chat history st.session_state.messages.append({"role": "User", "content": prompt}) response = st.session_state.chain.invoke({"question":prompt, "memory":st.session_state.memory}).split("\n<|")[0] # Display assistant response in chat message container with st.chat_message("assistant"): st.markdown(response) # st.session_state.memory.add_user_message(prompt) # st.session_state.memory.add_ai_message(response) st.session_state.memory.save_context({"question":prompt}, {"output":response}) st.session_state.memory.chat_memory.messages = st.session_state.memory.chat_memory.messages[-15:] # Add assistant response to chat history st.session_state.messages.append({"role": "assistant", "content": response}) try: timestamp = datetime.now(timezone.utc) + timedelta(hours=7) chat_text = f"Timestamp: {timestamp}\nUser Input: {prompt}\nChatbot Response: {response}\n\n" text_file = io.StringIO(chat_text) # Use io.StringIO data = { "text_content": [chat_text] # Store the raw text } dataset = Dataset.from_dict(data) # dataset_name = "your_dataset_name" # Replace with your desired dataset name # dataset_name = os.environ["DB_NAME"] dataset_name = "chat_with_me_history" repo_id = f"jonathanjordan21/{dataset_name}" # Full repo ID dataset.push_to_hub( repo_id=repo_id, private=True, # Set to False if you want it to be public # token="your_huggingface_token", # Replace with your token token=API_TOKEN ) print(f"Chat history added to Hugging Face dataset: {repo_id}") except Exception as e: print("ERROR!!!\n", str(e)) print("User Input :", prompt) print("Chatbot Response :", response) # # Insert data into the table # try : # try : # cur = st.session_state.conn.cursor() # except: # get_db_connection.clear() # st.session_state.conn = get_db_connection(POSTGRE_URL) # cur = st.session_state.conn.cursor() # cur.execute( # f"INSERT INTO chat_history (input_text, response_text, created_at) VALUES (%s, %s, %s)", # (prompt, response, datetime.now(timezone.utc) + timedelta(hours=7)) # ) # # Commit the transaction # st.session_state.conn.commit() # cur.close() # except Exception as e: # print("ERROR!!!\n", str(e)) # print("User Input :", prompt) # print("Chatbot Response :", response)