use remove url to load pth
Browse files- _run.py +0 -368
- compute.py +0 -132
- styletts2importable.py +1 -5
_run.py
DELETED
|
@@ -1,368 +0,0 @@
|
|
| 1 |
-
from cached_path import cached_path
|
| 2 |
-
|
| 3 |
-
from dp.phonemizer import Phonemizer
|
| 4 |
-
print("NLTK")
|
| 5 |
-
import nltk
|
| 6 |
-
nltk.download('punkt')
|
| 7 |
-
print("SCIPY")
|
| 8 |
-
from scipy.io.wavfile import write
|
| 9 |
-
print("TORCH STUFF")
|
| 10 |
-
import torch
|
| 11 |
-
print("START")
|
| 12 |
-
torch.manual_seed(0)
|
| 13 |
-
torch.backends.cudnn.benchmark = False
|
| 14 |
-
torch.backends.cudnn.deterministic = True
|
| 15 |
-
|
| 16 |
-
import random
|
| 17 |
-
random.seed(0)
|
| 18 |
-
|
| 19 |
-
import numpy as np
|
| 20 |
-
np.random.seed(0)
|
| 21 |
-
|
| 22 |
-
# load packages
|
| 23 |
-
import time
|
| 24 |
-
import random
|
| 25 |
-
import yaml
|
| 26 |
-
import numpy as np
|
| 27 |
-
import torch
|
| 28 |
-
import torchaudio
|
| 29 |
-
import librosa
|
| 30 |
-
from nltk.tokenize import word_tokenize
|
| 31 |
-
|
| 32 |
-
from models import *
|
| 33 |
-
from utils import *
|
| 34 |
-
from text_utils import TextCleaner
|
| 35 |
-
textclenaer = TextCleaner()
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
to_mel = torchaudio.transforms.MelSpectrogram(
|
| 39 |
-
n_mels=80, n_fft=2048, win_length=1200, hop_length=300)
|
| 40 |
-
mean, std = -4, 4
|
| 41 |
-
|
| 42 |
-
def length_to_mask(lengths):
|
| 43 |
-
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
| 44 |
-
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
| 45 |
-
return mask
|
| 46 |
-
|
| 47 |
-
def preprocess(wave):
|
| 48 |
-
wave_tensor = torch.from_numpy(wave).float()
|
| 49 |
-
mel_tensor = to_mel(wave_tensor)
|
| 50 |
-
mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std
|
| 51 |
-
return mel_tensor
|
| 52 |
-
|
| 53 |
-
def compute_style(path):
|
| 54 |
-
wave, sr = librosa.load(path, sr=24000)
|
| 55 |
-
audio, index = librosa.effects.trim(wave, top_db=30)
|
| 56 |
-
if sr != 24000:
|
| 57 |
-
audio = librosa.resample(audio, sr, 24000)
|
| 58 |
-
mel_tensor = preprocess(audio).to(device)
|
| 59 |
-
|
| 60 |
-
with torch.no_grad():
|
| 61 |
-
ref_s = model.style_encoder(mel_tensor.unsqueeze(1))
|
| 62 |
-
ref_p = model.predictor_encoder(mel_tensor.unsqueeze(1))
|
| 63 |
-
|
| 64 |
-
return torch.cat([ref_s, ref_p], dim=1)
|
| 65 |
-
|
| 66 |
-
device = 'cpu'
|
| 67 |
-
if torch.cuda.is_available():
|
| 68 |
-
device = 'cuda'
|
| 69 |
-
elif torch.backends.mps.is_available():
|
| 70 |
-
print("MPS would be available but cannot be used rn")
|
| 71 |
-
# device = 'mps'
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
# global_phonemizer = phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True)
|
| 75 |
-
phonemizer = Phonemizer.from_checkpoint(str(cached_path('https://public-asai-dl-models.s3.eu-central-1.amazonaws.com/DeepPhonemizer/en_us_cmudict_ipa_forward.pt')))
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
config = yaml.safe_load(open("Models/LibriTTS/config.yml"))
|
| 79 |
-
|
| 80 |
-
# load pretrained ASR model
|
| 81 |
-
ASR_config = config.get('ASR_config', False)
|
| 82 |
-
ASR_path = config.get('ASR_path', False)
|
| 83 |
-
text_aligner = load_ASR_models(ASR_path, ASR_config)
|
| 84 |
-
|
| 85 |
-
# load pretrained F0 model
|
| 86 |
-
F0_path = config.get('F0_path', False)
|
| 87 |
-
pitch_extractor = load_F0_models(F0_path)
|
| 88 |
-
|
| 89 |
-
# load BERT model
|
| 90 |
-
from Utils.PLBERT.util import load_plbert
|
| 91 |
-
BERT_path = config.get('PLBERT_dir', False)
|
| 92 |
-
plbert = load_plbert(BERT_path)
|
| 93 |
-
|
| 94 |
-
model_params = recursive_munch(config['model_params'])
|
| 95 |
-
model = build_model(model_params, text_aligner, pitch_extractor, plbert)
|
| 96 |
-
_ = [model[key].eval() for key in model]
|
| 97 |
-
_ = [model[key].to(device) for key in model]
|
| 98 |
-
|
| 99 |
-
params_whole = torch.load("Models/LibriTTS/epochs_2nd_00020.pth", map_location='cpu')
|
| 100 |
-
params = params_whole['net']
|
| 101 |
-
|
| 102 |
-
for key in model:
|
| 103 |
-
if key in params:
|
| 104 |
-
print('%s loaded' % key)
|
| 105 |
-
try:
|
| 106 |
-
model[key].load_state_dict(params[key])
|
| 107 |
-
except:
|
| 108 |
-
from collections import OrderedDict
|
| 109 |
-
state_dict = params[key]
|
| 110 |
-
new_state_dict = OrderedDict()
|
| 111 |
-
for k, v in state_dict.items():
|
| 112 |
-
name = k[7:] # remove `module.`
|
| 113 |
-
new_state_dict[name] = v
|
| 114 |
-
# load params
|
| 115 |
-
model[key].load_state_dict(new_state_dict, strict=False)
|
| 116 |
-
# except:
|
| 117 |
-
# _load(params[key], model[key])
|
| 118 |
-
_ = [model[key].eval() for key in model]
|
| 119 |
-
|
| 120 |
-
from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule
|
| 121 |
-
|
| 122 |
-
sampler = DiffusionSampler(
|
| 123 |
-
model.diffusion.diffusion,
|
| 124 |
-
sampler=ADPM2Sampler(),
|
| 125 |
-
sigma_schedule=KarrasSchedule(sigma_min=0.0001, sigma_max=3.0, rho=9.0), # empirical parameters
|
| 126 |
-
clamp=False
|
| 127 |
-
)
|
| 128 |
-
|
| 129 |
-
def inference(text, ref_s, alpha = 0.3, beta = 0.7, diffusion_steps=5, embedding_scale=1):
|
| 130 |
-
text = text.strip()
|
| 131 |
-
ps = phonemizer([text], lang='en_us')
|
| 132 |
-
ps = word_tokenize(ps[0])
|
| 133 |
-
ps = ' '.join(ps)
|
| 134 |
-
tokens = textclenaer(ps)
|
| 135 |
-
tokens.insert(0, 0)
|
| 136 |
-
tokens = torch.LongTensor(tokens).to(device).unsqueeze(0)
|
| 137 |
-
|
| 138 |
-
with torch.no_grad():
|
| 139 |
-
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
|
| 140 |
-
text_mask = length_to_mask(input_lengths).to(device)
|
| 141 |
-
|
| 142 |
-
t_en = model.text_encoder(tokens, input_lengths, text_mask)
|
| 143 |
-
bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
|
| 144 |
-
d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
|
| 145 |
-
|
| 146 |
-
s_pred = sampler(noise = torch.randn((1, 256)).unsqueeze(1).to(device),
|
| 147 |
-
embedding=bert_dur,
|
| 148 |
-
embedding_scale=embedding_scale,
|
| 149 |
-
features=ref_s, # reference from the same speaker as the embedding
|
| 150 |
-
num_steps=diffusion_steps).squeeze(1)
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
s = s_pred[:, 128:]
|
| 154 |
-
ref = s_pred[:, :128]
|
| 155 |
-
|
| 156 |
-
ref = alpha * ref + (1 - alpha) * ref_s[:, :128]
|
| 157 |
-
s = beta * s + (1 - beta) * ref_s[:, 128:]
|
| 158 |
-
|
| 159 |
-
d = model.predictor.text_encoder(d_en,
|
| 160 |
-
s, input_lengths, text_mask)
|
| 161 |
-
|
| 162 |
-
x, _ = model.predictor.lstm(d)
|
| 163 |
-
duration = model.predictor.duration_proj(x)
|
| 164 |
-
|
| 165 |
-
duration = torch.sigmoid(duration).sum(axis=-1)
|
| 166 |
-
pred_dur = torch.round(duration.squeeze()).clamp(min=1)
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))
|
| 170 |
-
c_frame = 0
|
| 171 |
-
for i in range(pred_aln_trg.size(0)):
|
| 172 |
-
pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1
|
| 173 |
-
c_frame += int(pred_dur[i].data)
|
| 174 |
-
|
| 175 |
-
# encode prosody
|
| 176 |
-
en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device))
|
| 177 |
-
if model_params.decoder.type == "hifigan":
|
| 178 |
-
asr_new = torch.zeros_like(en)
|
| 179 |
-
asr_new[:, :, 0] = en[:, :, 0]
|
| 180 |
-
asr_new[:, :, 1:] = en[:, :, 0:-1]
|
| 181 |
-
en = asr_new
|
| 182 |
-
|
| 183 |
-
F0_pred, N_pred = model.predictor.F0Ntrain(en, s)
|
| 184 |
-
|
| 185 |
-
asr = (t_en @ pred_aln_trg.unsqueeze(0).to(device))
|
| 186 |
-
if model_params.decoder.type == "hifigan":
|
| 187 |
-
asr_new = torch.zeros_like(asr)
|
| 188 |
-
asr_new[:, :, 0] = asr[:, :, 0]
|
| 189 |
-
asr_new[:, :, 1:] = asr[:, :, 0:-1]
|
| 190 |
-
asr = asr_new
|
| 191 |
-
|
| 192 |
-
out = model.decoder(asr,
|
| 193 |
-
F0_pred, N_pred, ref.squeeze().unsqueeze(0))
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
return out.squeeze().cpu().numpy()[..., :-50] # weird pulse at the end of the model, need to be fixed later
|
| 197 |
-
|
| 198 |
-
def LFinference(text, s_prev, ref_s, alpha = 0.3, beta = 0.7, t = 0.7, diffusion_steps=5, embedding_scale=1):
|
| 199 |
-
text = text.strip()
|
| 200 |
-
ps = phonemizer([text], lang='en_us')
|
| 201 |
-
ps = word_tokenize(ps[0])
|
| 202 |
-
ps = ' '.join(ps)
|
| 203 |
-
ps = ps.replace('``', '"')
|
| 204 |
-
ps = ps.replace("''", '"')
|
| 205 |
-
|
| 206 |
-
tokens = textclenaer(ps)
|
| 207 |
-
tokens.insert(0, 0)
|
| 208 |
-
tokens = torch.LongTensor(tokens).to(device).unsqueeze(0)
|
| 209 |
-
|
| 210 |
-
with torch.no_grad():
|
| 211 |
-
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
|
| 212 |
-
text_mask = length_to_mask(input_lengths).to(device)
|
| 213 |
-
|
| 214 |
-
t_en = model.text_encoder(tokens, input_lengths, text_mask)
|
| 215 |
-
bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
|
| 216 |
-
d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
|
| 217 |
-
|
| 218 |
-
s_pred = sampler(noise = torch.randn((1, 256)).unsqueeze(1).to(device),
|
| 219 |
-
embedding=bert_dur,
|
| 220 |
-
embedding_scale=embedding_scale,
|
| 221 |
-
features=ref_s, # reference from the same speaker as the embedding
|
| 222 |
-
num_steps=diffusion_steps).squeeze(1)
|
| 223 |
-
|
| 224 |
-
if s_prev is not None:
|
| 225 |
-
# convex combination of previous and current style
|
| 226 |
-
s_pred = t * s_prev + (1 - t) * s_pred
|
| 227 |
-
|
| 228 |
-
s = s_pred[:, 128:]
|
| 229 |
-
ref = s_pred[:, :128]
|
| 230 |
-
|
| 231 |
-
ref = alpha * ref + (1 - alpha) * ref_s[:, :128]
|
| 232 |
-
s = beta * s + (1 - beta) * ref_s[:, 128:]
|
| 233 |
-
|
| 234 |
-
s_pred = torch.cat([ref, s], dim=-1)
|
| 235 |
-
|
| 236 |
-
d = model.predictor.text_encoder(d_en,
|
| 237 |
-
s, input_lengths, text_mask)
|
| 238 |
-
|
| 239 |
-
x, _ = model.predictor.lstm(d)
|
| 240 |
-
duration = model.predictor.duration_proj(x)
|
| 241 |
-
|
| 242 |
-
duration = torch.sigmoid(duration).sum(axis=-1)
|
| 243 |
-
pred_dur = torch.round(duration.squeeze()).clamp(min=1)
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))
|
| 247 |
-
c_frame = 0
|
| 248 |
-
for i in range(pred_aln_trg.size(0)):
|
| 249 |
-
pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1
|
| 250 |
-
c_frame += int(pred_dur[i].data)
|
| 251 |
-
|
| 252 |
-
# encode prosody
|
| 253 |
-
en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device))
|
| 254 |
-
if model_params.decoder.type == "hifigan":
|
| 255 |
-
asr_new = torch.zeros_like(en)
|
| 256 |
-
asr_new[:, :, 0] = en[:, :, 0]
|
| 257 |
-
asr_new[:, :, 1:] = en[:, :, 0:-1]
|
| 258 |
-
en = asr_new
|
| 259 |
-
|
| 260 |
-
F0_pred, N_pred = model.predictor.F0Ntrain(en, s)
|
| 261 |
-
|
| 262 |
-
asr = (t_en @ pred_aln_trg.unsqueeze(0).to(device))
|
| 263 |
-
if model_params.decoder.type == "hifigan":
|
| 264 |
-
asr_new = torch.zeros_like(asr)
|
| 265 |
-
asr_new[:, :, 0] = asr[:, :, 0]
|
| 266 |
-
asr_new[:, :, 1:] = asr[:, :, 0:-1]
|
| 267 |
-
asr = asr_new
|
| 268 |
-
|
| 269 |
-
out = model.decoder(asr,
|
| 270 |
-
F0_pred, N_pred, ref.squeeze().unsqueeze(0))
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
return out.squeeze().cpu().numpy()[..., :-100], s_pred # weird pulse at the end of the model, need to be fixed later
|
| 274 |
-
|
| 275 |
-
def STinference(text, ref_s, ref_text, alpha = 0.3, beta = 0.7, diffusion_steps=5, embedding_scale=1):
|
| 276 |
-
text = text.strip()
|
| 277 |
-
ps = phonemizer([text], lang='en_us')
|
| 278 |
-
ps = word_tokenize(ps[0])
|
| 279 |
-
ps = ' '.join(ps)
|
| 280 |
-
|
| 281 |
-
tokens = textclenaer(ps)
|
| 282 |
-
tokens.insert(0, 0)
|
| 283 |
-
tokens = torch.LongTensor(tokens).to(device).unsqueeze(0)
|
| 284 |
-
|
| 285 |
-
ref_text = ref_text.strip()
|
| 286 |
-
ps = phonemizer([ref_text], lang='en_us')
|
| 287 |
-
ps = word_tokenize(ps[0])
|
| 288 |
-
ps = ' '.join(ps)
|
| 289 |
-
|
| 290 |
-
ref_tokens = textclenaer(ps)
|
| 291 |
-
ref_tokens.insert(0, 0)
|
| 292 |
-
ref_tokens = torch.LongTensor(ref_tokens).to(device).unsqueeze(0)
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
with torch.no_grad():
|
| 296 |
-
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
|
| 297 |
-
text_mask = length_to_mask(input_lengths).to(device)
|
| 298 |
-
|
| 299 |
-
t_en = model.text_encoder(tokens, input_lengths, text_mask)
|
| 300 |
-
bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
|
| 301 |
-
d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
|
| 302 |
-
|
| 303 |
-
ref_input_lengths = torch.LongTensor([ref_tokens.shape[-1]]).to(device)
|
| 304 |
-
ref_text_mask = length_to_mask(ref_input_lengths).to(device)
|
| 305 |
-
model.bert(ref_tokens, attention_mask=(~ref_text_mask).int())
|
| 306 |
-
s_pred = sampler(noise = torch.randn((1, 256)).unsqueeze(1).to(device),
|
| 307 |
-
embedding=bert_dur,
|
| 308 |
-
embedding_scale=embedding_scale,
|
| 309 |
-
features=ref_s, # reference from the same speaker as the embedding
|
| 310 |
-
num_steps=diffusion_steps).squeeze(1)
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
s = s_pred[:, 128:]
|
| 314 |
-
ref = s_pred[:, :128]
|
| 315 |
-
|
| 316 |
-
ref = alpha * ref + (1 - alpha) * ref_s[:, :128]
|
| 317 |
-
s = beta * s + (1 - beta) * ref_s[:, 128:]
|
| 318 |
-
|
| 319 |
-
d = model.predictor.text_encoder(d_en,
|
| 320 |
-
s, input_lengths, text_mask)
|
| 321 |
-
|
| 322 |
-
x, _ = model.predictor.lstm(d)
|
| 323 |
-
duration = model.predictor.duration_proj(x)
|
| 324 |
-
|
| 325 |
-
duration = torch.sigmoid(duration).sum(axis=-1)
|
| 326 |
-
pred_dur = torch.round(duration.squeeze()).clamp(min=1)
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))
|
| 330 |
-
c_frame = 0
|
| 331 |
-
for i in range(pred_aln_trg.size(0)):
|
| 332 |
-
pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1
|
| 333 |
-
c_frame += int(pred_dur[i].data)
|
| 334 |
-
|
| 335 |
-
# encode prosody
|
| 336 |
-
en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device))
|
| 337 |
-
if model_params.decoder.type == "hifigan":
|
| 338 |
-
asr_new = torch.zeros_like(en)
|
| 339 |
-
asr_new[:, :, 0] = en[:, :, 0]
|
| 340 |
-
asr_new[:, :, 1:] = en[:, :, 0:-1]
|
| 341 |
-
en = asr_new
|
| 342 |
-
|
| 343 |
-
F0_pred, N_pred = model.predictor.F0Ntrain(en, s)
|
| 344 |
-
|
| 345 |
-
asr = (t_en @ pred_aln_trg.unsqueeze(0).to(device))
|
| 346 |
-
if model_params.decoder.type == "hifigan":
|
| 347 |
-
asr_new = torch.zeros_like(asr)
|
| 348 |
-
asr_new[:, :, 0] = asr[:, :, 0]
|
| 349 |
-
asr_new[:, :, 1:] = asr[:, :, 0:-1]
|
| 350 |
-
asr = asr_new
|
| 351 |
-
|
| 352 |
-
out = model.decoder(asr,
|
| 353 |
-
F0_pred, N_pred, ref.squeeze().unsqueeze(0))
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
return out.squeeze().cpu().numpy()[..., :-50] # weird pulse at the end of the model, need to be fixed later
|
| 357 |
-
print("Time to synthesize!")
|
| 358 |
-
ref_s = compute_style('./voice/voice.wav')
|
| 359 |
-
while True:
|
| 360 |
-
text = input("What to say? > ")
|
| 361 |
-
start = time.time()
|
| 362 |
-
wav = inference(text, ref_s, alpha=0.3, beta=0.7, diffusion_steps=15, embedding_scale=1)
|
| 363 |
-
rtf = (time.time() - start) / (len(wav) / 24000)
|
| 364 |
-
print(f"RTF = {rtf:5f}")
|
| 365 |
-
print(k + ' Synthesized:')
|
| 366 |
-
# display(ipd.Audio(wav, rate=24000, normalize=False))
|
| 367 |
-
write('result.wav', 24000, wav)
|
| 368 |
-
print("Saved to result.wav")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
compute.py
DELETED
|
@@ -1,132 +0,0 @@
|
|
| 1 |
-
from cached_path import cached_path
|
| 2 |
-
|
| 3 |
-
# from dp.phonemizer import Phonemizer
|
| 4 |
-
print("NLTK")
|
| 5 |
-
import nltk
|
| 6 |
-
nltk.download('punkt')
|
| 7 |
-
print("SCIPY")
|
| 8 |
-
print("TORCH STUFF")
|
| 9 |
-
import torch
|
| 10 |
-
print("START")
|
| 11 |
-
torch.manual_seed(0)
|
| 12 |
-
torch.backends.cudnn.benchmark = False
|
| 13 |
-
torch.backends.cudnn.deterministic = True
|
| 14 |
-
|
| 15 |
-
import random
|
| 16 |
-
random.seed(0)
|
| 17 |
-
|
| 18 |
-
import numpy as np
|
| 19 |
-
np.random.seed(0)
|
| 20 |
-
|
| 21 |
-
# load packages
|
| 22 |
-
import random
|
| 23 |
-
import yaml
|
| 24 |
-
import numpy as np
|
| 25 |
-
import torch
|
| 26 |
-
import torchaudio
|
| 27 |
-
import librosa
|
| 28 |
-
|
| 29 |
-
from models import *
|
| 30 |
-
from utils import *
|
| 31 |
-
from text_utils import TextCleaner
|
| 32 |
-
textclenaer = TextCleaner()
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
to_mel = torchaudio.transforms.MelSpectrogram(
|
| 36 |
-
n_mels=80, n_fft=2048, win_length=1200, hop_length=300)
|
| 37 |
-
mean, std = -4, 4
|
| 38 |
-
|
| 39 |
-
def length_to_mask(lengths):
|
| 40 |
-
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
| 41 |
-
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
| 42 |
-
return mask
|
| 43 |
-
|
| 44 |
-
def preprocess(wave):
|
| 45 |
-
wave_tensor = torch.from_numpy(wave).float()
|
| 46 |
-
mel_tensor = to_mel(wave_tensor)
|
| 47 |
-
mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std
|
| 48 |
-
return mel_tensor
|
| 49 |
-
|
| 50 |
-
def compute_style(path):
|
| 51 |
-
wave, sr = librosa.load(path, sr=24000)
|
| 52 |
-
audio, index = librosa.effects.trim(wave, top_db=30)
|
| 53 |
-
if sr != 24000:
|
| 54 |
-
audio = librosa.resample(audio, sr, 24000)
|
| 55 |
-
mel_tensor = preprocess(audio).to(device)
|
| 56 |
-
|
| 57 |
-
with torch.no_grad():
|
| 58 |
-
ref_s = model.style_encoder(mel_tensor.unsqueeze(1))
|
| 59 |
-
ref_p = model.predictor_encoder(mel_tensor.unsqueeze(1))
|
| 60 |
-
|
| 61 |
-
return torch.cat([ref_s, ref_p], dim=1)
|
| 62 |
-
|
| 63 |
-
device = 'cpu'
|
| 64 |
-
if torch.cuda.is_available():
|
| 65 |
-
device = 'cuda'
|
| 66 |
-
elif torch.backends.mps.is_available():
|
| 67 |
-
print("MPS would be available but cannot be used rn")
|
| 68 |
-
# device = 'mps'
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
# config = yaml.safe_load(open("Models/LibriTTS/config.yml"))
|
| 73 |
-
config = yaml.safe_load(open(str(cached_path("hf://yl4579/StyleTTS2-LibriTTS/Models/LibriTTS/config.yml"))))
|
| 74 |
-
|
| 75 |
-
# load pretrained ASR model
|
| 76 |
-
ASR_config = config.get('ASR_config', False)
|
| 77 |
-
ASR_path = config.get('ASR_path', False)
|
| 78 |
-
text_aligner = load_ASR_models(ASR_path, ASR_config)
|
| 79 |
-
|
| 80 |
-
# load pretrained F0 model
|
| 81 |
-
F0_path = config.get('F0_path', False)
|
| 82 |
-
pitch_extractor = load_F0_models(F0_path)
|
| 83 |
-
|
| 84 |
-
# load BERT model
|
| 85 |
-
from Utils.PLBERT.util import load_plbert
|
| 86 |
-
BERT_path = config.get('PLBERT_dir', False)
|
| 87 |
-
plbert = load_plbert(BERT_path)
|
| 88 |
-
|
| 89 |
-
model_params = recursive_munch(config['model_params'])
|
| 90 |
-
model = build_model(model_params, text_aligner, pitch_extractor, plbert)
|
| 91 |
-
_ = [model[key].eval() for key in model]
|
| 92 |
-
_ = [model[key].to(device) for key in model]
|
| 93 |
-
|
| 94 |
-
# params_whole = torch.load("Models/LibriTTS/epochs_2nd_00020.pth", map_location='cpu')
|
| 95 |
-
params_whole = torch.load(str(cached_path("hf://yl4579/StyleTTS2-LibriTTS/Models/LibriTTS/epochs_2nd_00020.pth")), map_location='cpu')
|
| 96 |
-
params = params_whole['net']
|
| 97 |
-
|
| 98 |
-
for key in model:
|
| 99 |
-
if key in params:
|
| 100 |
-
print('%s loaded' % key)
|
| 101 |
-
try:
|
| 102 |
-
model[key].load_state_dict(params[key])
|
| 103 |
-
except:
|
| 104 |
-
from collections import OrderedDict
|
| 105 |
-
state_dict = params[key]
|
| 106 |
-
new_state_dict = OrderedDict()
|
| 107 |
-
for k, v in state_dict.items():
|
| 108 |
-
name = k[7:] # remove `module.`
|
| 109 |
-
new_state_dict[name] = v
|
| 110 |
-
# load params
|
| 111 |
-
model[key].load_state_dict(new_state_dict, strict=False)
|
| 112 |
-
# except:
|
| 113 |
-
# _load(params[key], model[key])
|
| 114 |
-
_ = [model[key].eval() for key in model]
|
| 115 |
-
|
| 116 |
-
from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule
|
| 117 |
-
|
| 118 |
-
sampler = DiffusionSampler(
|
| 119 |
-
model.diffusion.diffusion,
|
| 120 |
-
sampler=ADPM2Sampler(),
|
| 121 |
-
sigma_schedule=KarrasSchedule(sigma_min=0.0001, sigma_max=3.0, rho=9.0), # empirical parameters
|
| 122 |
-
clamp=False
|
| 123 |
-
)
|
| 124 |
-
voicelist = ['f-us-1', 'f-us-2', 'f-us-3', 'f-us-4', 'm-us-1', 'm-us-2', 'm-us-3', 'm-us-4']
|
| 125 |
-
voices = {}
|
| 126 |
-
# todo: cache computed style, load using pickle
|
| 127 |
-
for v in voicelist:
|
| 128 |
-
print(f"Loading voice {v}")
|
| 129 |
-
voices[v] = compute_style(f'voices/{v}.wav')
|
| 130 |
-
import pickle
|
| 131 |
-
with open('voices.pkl', 'wb') as f:
|
| 132 |
-
pickle.dump(voices, f)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
styletts2importable.py
CHANGED
|
@@ -189,11 +189,7 @@ _ = [model[key].to(device) for key in model]
|
|
| 189 |
|
| 190 |
|
| 191 |
params_whole = torch.load(
|
| 192 |
-
str(
|
| 193 |
-
cached_path(
|
| 194 |
-
"hf://yl4579/StyleTTS2-LibriTTS/Models/LibriTTS/epochs_2nd_00020.pth"
|
| 195 |
-
)
|
| 196 |
-
),
|
| 197 |
map_location="cpu",
|
| 198 |
)
|
| 199 |
params = params_whole["net"]
|
|
|
|
| 189 |
|
| 190 |
|
| 191 |
params_whole = torch.load(
|
| 192 |
+
str(cached_path("https://base-weights.weights.gg/epochs_2nd_00020.pth")),
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
map_location="cpu",
|
| 194 |
)
|
| 195 |
params = params_whole["net"]
|