Spaces:
Configuration error
Configuration error
File size: 4,655 Bytes
212a8e9 0736615 212a8e9 0736615 212a8e9 0736615 212a8e9 0736615 212a8e9 0736615 212a8e9 0736615 212a8e9 0736615 212a8e9 0736615 212a8e9 0736615 212a8e9 0736615 212a8e9 0736615 212a8e9 0736615 212a8e9 0736615 212a8e9 0736615 212a8e9 0736615 212a8e9 0736615 212a8e9 0736615 212a8e9 0736615 212a8e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import evaluate
import json
import sys
from pathlib import Path
import gradio as gr
import numpy as np
import pandas as pd
import ast
from ece import ECE # loads local instead
import matplotlib.pyplot as plt
"""
import seaborn as sns
sns.set_style('white')
sns.set_context("paper", font_scale=1) # 2
"""
# plt.rcParams['figure.figsize'] = [10, 7]
plt.rcParams["figure.dpi"] = 300
plt.switch_backend(
"agg"
) # ; https://stackoverflow.com/questions/14694408/runtimeerror-main-thread-is-not-in-main-loop
sliders = [
gr.Slider(0, 100, value=10, label="n_bins"),
gr.Slider(
0, 100, value=None, label="bin_range", visible=False
), # DEV: need to have a double slider
gr.Dropdown(choices=["equal-range", "equal-mass"], value="equal-range", label="scheme"),
gr.Dropdown(choices=["upper-edge", "center"], value="upper-edge", label="proxy"),
gr.Dropdown(choices=[1, 2, np.inf], value=1, label="p"),
]
slider_defaults = [slider.value for slider in sliders]
# example data
df = dict()
df["predictions"] = [[0.6, 0.2, 0.2], [0, 0.95, 0.05], [0.7, 0.1, 0.2]]
df["references"] = [0, 1, 2]
component = gr.inputs.Dataframe(
headers=["predictions", "references"], col_count=2, datatype="number", type="pandas"
)
component.value = [
[[0.6, 0.2, 0.2], 0],
[[0.7, 0.1, 0.2], 2],
[[0, 0.95, 0.05], 1],
]
sample_data = [[component] + slider_defaults] ##json.dumps(df)
local_path = Path(sys.path[0])
metric = ECE()
# module = evaluate.load("jordyvl/ece")
# launch_gradio_widget(module)
"""
Switch inputs and compute_fn
"""
def reliability_plot(results):
fig = plt.figure()
ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=2)
ax2 = plt.subplot2grid((3, 1), (2, 0))
n_bins = len(results["y_bar"])
bin_range = [
results["y_bar"][0] - results["y_bar"][0],
results["y_bar"][-1],
] # np.linspace(0, 1, n_bins)
# if upper edge then minus binsize; same for center [but half]
ranged = np.linspace(bin_range[0], bin_range[1], n_bins)
ax1.plot(
ranged,
ranged,
color="darkgreen",
ls="dotted",
label="Perfect",
)
# ax1.plot(results["y_bar"], results["y_bar"], color="darkblue", label="Perfect")
anindices = np.where(~np.isnan(results["p_bar"][:-1]))[0]
bin_freqs = np.zeros(n_bins)
bin_freqs[anindices] = results["bin_freq"]
ax2.hist(results["y_bar"], results["y_bar"], weights=bin_freqs)
# widths = np.diff(results["y_bar"])
for j, bin in enumerate(results["y_bar"]):
perfect = results["y_bar"][j]
empirical = results["p_bar"][j]
if np.isnan(empirical):
continue
ax1.bar([perfect], height=[empirical], width=-ranged[j], align="edge", color="lightblue")
"""
if perfect == empirical:
continue
"""
acc_plt = ax2.axvline(x=results["accuracy"], ls="solid", lw=3, c="black", label="Accuracy")
conf_plt = ax2.axvline(
x=results["p_bar_cont"], ls="dotted", lw=3, c="#444", label="Avg. confidence"
)
ax2.legend(handles=[acc_plt, conf_plt])
# Bin differences
ax1.set_ylabel("Conditional Expectation")
ax1.set_ylim([-0.05, 1.05]) # respective to bin range
ax1.legend(loc="lower right")
ax1.set_title("Reliability Diagram")
# Bin frequencies
ax2.set_xlabel("Confidence")
ax2.set_ylabel("Count")
ax2.legend(loc="upper left") # , ncol=2
plt.tight_layout()
return fig
def compute_and_plot(data, n_bins, bin_range, scheme, proxy, p):
# DEV: check on invalid datatypes with better warnings
if isinstance(data, pd.DataFrame):
data.dropna(inplace=True)
predictions = [
ast.literal_eval(prediction) if not isinstance(prediction, list) else prediction
for prediction in data["predictions"]
]
references = [reference for reference in data["references"]]
results = metric._compute(
predictions,
references,
n_bins=n_bins,
scheme=scheme,
proxy=proxy,
p=p,
detail=True,
)
plot = reliability_plot(results)
return results["ECE"], plot # plt.gcf()
outputs = [gr.outputs.Textbox(label="ECE"), gr.Plot(label="Reliability diagram")]
iface = gr.Interface(
fn=compute_and_plot,
inputs=[component] + sliders,
outputs=outputs,
description=metric.info.description,
article=evaluate.utils.parse_readme(local_path / "README.md"),
title=f"Metric: {metric.name}",
# examples=sample_data; # ValueError: Examples argument must either be a directory or a nested list, where each sublist represents a set of inputs.
).launch()
|