# This script creates a simple web application using Gradio to generate answers for VQA using the BLIP model from Hugging Face's Transformers library. # Import necessary libraries import gradio as gr import numpy as np from PIL import Image from transformers import BlipProcessor, BlipForQuestionAnswering # Load BLIP processor and model processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base") model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base") # Define the function for Visual Question Answering def VQA(input_image: np.ndarray, question): # Convert numpy array to PIL Image and convert to RGB raw_image = Image.fromarray(input_image).convert('RGB') # Prepare the inputs for the model inputs = processor(raw_image, question, return_tensors="pt") # Generate the answer using the model outputs = model.generate(**inputs, max_length=100) # Decode the generated tokens to text and store it into `answer` answer = processor.decode(outputs[0], skip_special_tokens=True) return answer # Create a Gradio interface iface = gr.Interface( fn=VQA, inputs=[ gr.Image(label="Input image:"), gr.Textbox(label="Question:", placeholder="Type your question here...") ], outputs="text", title="Visual Question Answering", description="This is a simple web app for VQA using BLIP model from Salesforce.\nUpload the image file:" ) # Launch the Gradio app iface.launch()