File size: 11,600 Bytes
87156fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
import gradio as gr
import torch
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel, PeftConfig
from huggingface_hub import hf_hub_download, login
import os
import json
# Retrieve the token from the environment variable
hf_token = os.environ.get("HF_TOKEN")
if hf_token:
login(token=hf_token)
print("Successfully logged in to Hugging Face Hub!")
else:
print("HF_TOKEN not found in environment variables. Cannot authenticate.")
DEFAULT_FORM_QUESTIONS = [
[
"SAMPLE",
"Does the algorithmic undecidability in the Halting Problem reflect metaphysical truths about reality and real limits of physical computation as suggested by Turing, or does it instead reveal nothing more than a boundary of the rules of language and the way we use language as suggested by Wittgenstein's rule-following paradox?",
"A synthetic response might suggest that the Halting Problem illuminates limits inherent in algorithmic processes, while Wittgenstein's insights highlight the role of language and social context in shaping our understanding of those limits - both offering valuable perspectives that contribute to a nuanced understanding of computation, knowledge, and our relationship to the world."
],
[
"TRAINING",
"Why does Spinoza consider doubt a signal of an inadequate idea?",
"Because doubt arises when two conflicting ideas about the same object are held, showing that neither is clear and distinct."
],
[
"TRAINING",
"How does Dewey describe the interplay between analysis and synthesis during judgment?",
"Analysis emphasizes significant traits while synthesis places them in an inclusive context; each perfects the other in a continuous spiral.",
],
["NEW", "Other", "", ""]
]
def generate_output(base_model_name, adapter_name, question, max_tokens, temp):
if adapter_name:
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
base_model = AutoModelForCausalLM.from_pretrained(base_model_name)
model = PeftModel.from_pretrained(base_model, adapter_name)
pipe = pipeline(
task="text-generation",
model=model,
device_map="auto",
torch_dtype=torch.bfloat16,
tokenizer=tokenizer
)
else:
pipe = pipeline(
task="text-generation",
model=base_model_name,
device_map="auto",
torch_dtype=torch.bfloat16
)
messages = [
{
"role": "system",
"content": [{"type": "text", "text": "You are a helpful assistant who answers questions."}]
},
{
"role": "user",
"content": [{"type": "text", "text": question}]
}
]
chat_template = """
{% for message in messages %}
{% if message['role'] == 'system' %}
{{ message['content'][0]['text'] }}
{% elif message['role'] == 'user' %}
User: {{ message['content'][0]['text'] }}
{% elif message['role'] == 'assistant' %}
Assistant: {{ message['content'][0]['text'] }}
{% endif %}
{% endfor %}Assistant:"""
# Apply the chat template to format the input for the model.
# `tokenize=False` is used because the pipeline will handle tokenization.
# `add_generation_prompt=True` adds the necessary prompt for the model to generate a response.
prompt = pipe.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
chat_template=chat_template
)
# Pass the formatted prompt to the pipeline.
# max_new_tokens limits the length of the generated answer.
outputs = pipe(prompt, max_new_tokens=max_tokens, temperature=temp)
# Extract the generated text. The output is a list of dictionaries.
# The generated text is typically found in 'generated_text' and needs to be cleaned to remove the input prompt.
generated_text = outputs[0]['generated_text'][len(prompt):].strip()
# generated text may include overflow of extra generated chat if first response less than max_new_tokens limit
generated_text_first_line = generated_text.splitlines()[0]
return generated_text_first_line
def run_challenge(
base_model,
adapter,
custom_adapter,
prompt_question,
custom_question,
max_tokens,
temp
):
if (base_model and (adapter or custom_adapter) and (prompt_question or custom_question) and max_tokens and temp):
if prompt_question == "Other":
prompt_question = custom_question
if adapter == "Other":
adapter = custom_adapter
# get base model output
output_base_model = generate_output(base_model, "", prompt_question, max_tokens, temp)
#output_base_model = "TEMP OUTAGE"
print(output_base_model)
# get adapter output
output_adapter = generate_output(base_model, adapter, prompt_question, max_tokens, temp)
#output_adapter = "TEMP OUTAGE"
print(output_adapter)
return output_base_model, output_adapter
else:
return "Incomplete form values", "Incomplete form values"
def handle_question_choice(choice):
if choice == "Other":
return gr.update(label="Enter new question", visible=True, scale=1) # Show the textbox
else:
return gr.update(visible=False) # Hide the textbox
def handle_question_training(choice):
for sublist in DEFAULT_FORM_QUESTIONS: # Outer loop: iterates through each sublist
if (sublist[0] == "TRAINING") and (sublist[1] == choice):
return gr.update(value="**Training Answer**: " + sublist[2], visible=True)
elif (sublist[0] == "SAMPLE") and (sublist[1] == choice):
return gr.update(value="**Sample Question Information (not used in training)**: " + sublist[2], visible=True)
return gr.update(value="", visible=False)
def handle_adapter_choice(choice):
if choice == "Other":
return gr.update(visible=True) # Show the textbox
else:
return gr.update(visible=False) # Hide the textbox
def get_base_model(adapter_repo):
"""
Get base model for adapter via hub
"""
try:
# Download adapter config from hub
config_path = hf_hub_download(repo_id=adapter_repo, filename="adapter_config.json")
with open(config_path, 'r') as f:
adapter_config = json.load(f)
base_model = adapter_config.get('base_model_name_or_path', '')
if base_model:
return base_model
else:
print(f"❌ Base model not found")
return "Base model not found"
except Exception as e:
print(f"Hub base model check failed: {e}")
return "Base model not found"
def handle_adapter_radio(choice):
if choice != "Other":
print("handle_adapter_radio")
print(choice)
model = get_base_model(choice)
return gr.update(value=model)
with gr.Blocks() as demo:
# Add a title and description for the app.
gr.Markdown("# Transformers Text-Generation Pipeline Q&A: Adapter vs. Base Model")
gr.Markdown("### A tool for experimenting with PEFT (Parameter-Efficient Fine-tuning) and LoRA (Low-Rank Adaptation) adapter performance.")
with gr.Row():
with gr.Column(scale=1):
with gr.Row():
prompt_adapter = gr.Radio(
[
"joshause/llama-3.2-1b-dewey-how-we-think-adapter",
"joshause/gemma-3-1b-pt-spinoza-treatise-emendation-intellect",
"Other"
],
label="Select an adapter or enter a new adapter",
scale=1
)
with gr.Group():
custom_adapter = gr.Textbox(label="Enter an adapter", scale=1, visible=False)
submit_adapter_button = gr.Button(
"Get Base Model",
scale=1,
variant="secondary",
visible=False
)
with gr.Row():
prompt_base_model = gr.Textbox(
label="Base model (auto-filled)",
max_lines=1,
interactive=False,
scale=1,
value=""
)
with gr.Row():
questions = [[sublist[0]+" QUESTION: "+sublist[1], sublist[1]] for sublist in DEFAULT_FORM_QUESTIONS]
prompt_question = gr.Radio(questions, label="Select a question or enter a new question", scale=1)
with gr.Group():
training_answer = gr.Markdown("", padding=True, visible=False)
custom_question = gr.Textbox(label="Enter new question", visible=False, scale=1)
with gr.Row():
challenge_submit_button = gr.Button(
"Run Comparison",
scale=1,
variant="primary"
)
with gr.Column(scale=1):
with gr.Row():
output_max_tokens = gr.Slider(
1, 512, step=1, value=128, label="Max new tokens", info="max_new_tokens in text-generation pipeline limits the length of the generated answer"
)
with gr.Row():
output_temp = gr.Slider(
0.1, 0.9, step=0.1, value=0.7, label="Temperature", info="temperature in text-generation pipeline parameter controls the randomness of the generated text"
)
with gr.Row():
output_adapter = gr.Textbox(
label="Adapter output",
show_label=True,
lines=4,
interactive=False,
show_copy_button=True,
)
with gr.Row():
output_base_model = gr.Textbox(
label="Base model output",
show_label=True,
lines=4,
interactive=False,
show_copy_button=True,
)
prompt_adapter.change(
fn=handle_adapter_choice,
inputs=prompt_adapter,
outputs=custom_adapter
).then(
fn=handle_adapter_choice,
inputs=prompt_adapter,
outputs=submit_adapter_button
).then(
fn=handle_adapter_radio,
inputs=prompt_adapter,
outputs=prompt_base_model
)
prompt_question.change(
fn=handle_question_choice,
inputs=prompt_question,
outputs=custom_question
).then(
fn=handle_question_training,
inputs=prompt_question,
outputs=training_answer
)
submit_adapter_button.click(
fn=get_base_model,
inputs=custom_adapter,
outputs=prompt_base_model
)
challenge_submit_button.click(
fn=run_challenge,
inputs=[
prompt_base_model,
prompt_adapter,
custom_adapter,
prompt_question,
custom_question,
output_max_tokens,
output_temp
],
outputs=[
output_base_model,
output_adapter
]
)
if __name__ == "__main__":
demo.launch() |