File size: 12,927 Bytes
5092552
86c8869
 
5092552
 
d4557ee
 
 
f4505e9
86c8869
e292008
1fa6961
f4505e9
 
0c69489
e292008
0c69489
e292008
 
f4505e9
5092552
 
86c8869
5092552
86c8869
 
 
 
 
 
 
 
 
 
5092552
a35ea13
86c8869
f4505e9
86c8869
 
f0e66e7
f4505e9
 
86c8869
 
f0e66e7
1fa6961
f4505e9
86c8869
 
f0e66e7
cc467c2
f4505e9
86c8869
 
 
f4505e9
 
 
 
86c8869
 
f0e66e7
a55679f
f4505e9
 
86c8869
25c1140
e292008
86c8869
 
a55679f
5092552
a55679f
 
25c1140
d4557ee
0f81d99
f4505e9
9a3d597
86c8869
25c1140
e292008
5092552
a55679f
5092552
a55679f
 
25c1140
d4557ee
b1b6e20
5092552
a55679f
86c8869
e292008
f4505e9
 
 
e292008
d4557ee
f4505e9
5092552
86c8869
 
5092552
e292008
86c8869
a55679f
 
 
 
d4557ee
a55679f
5092552
86c8869
e292008
 
 
 
 
 
5092552
86c8869
5092552
 
e292008
 
a55679f
 
86c8869
a55679f
5092552
86c8869
 
5092552
86c8869
5092552
 
a35ea13
86c8869
 
5092552
e292008
5092552
 
 
86c8869
a55679f
e292008
5092552
0c69489
5092552
86c8869
 
 
 
 
 
 
5092552
86c8869
5092552
86c8869
 
 
 
5092552
 
86c8869
5092552
 
 
0c69489
e292008
5092552
0c69489
5092552
86c8869
 
 
 
 
 
 
5092552
86c8869
5092552
86c8869
 
 
 
5092552
 
86c8869
5092552
 
 
0c69489
e292008
5092552
0c69489
5092552
86c8869
 
 
 
 
 
 
5092552
86c8869
5092552
86c8869
 
 
 
5092552
 
86c8869
5092552
 
 
a55679f
5092552
 
 
 
 
86c8869
5092552
 
 
 
 
 
 
 
86c8869
5092552
86c8869
5092552
 
 
 
86c8869
 
5092552
 
 
 
 
86c8869
 
 
 
5092552
 
86c8869
5092552
 
 
 
 
0c69489
 
e292008
 
0c69489
5092552
 
0ab2059
5092552
 
 
 
 
 
 
 
 
 
d4557ee
0f81d99
0c69489
86c8869
0c69489
 
 
 
 
 
86c8869
72c7dbb
5092552
 
 
 
 
 
86c8869
 
 
5092552
86c8869
5092552
86c8869
5092552
 
86c8869
 
0c69489
 
86c8869
 
5092552
 
 
86c8869
 
5092552
 
86c8869
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
"""
Enhanced Multi-LLM Agent System - CORRECTED VERSION
Fixes the issue where questions are returned as answers
"""

import os
import time
import random
import operator
from typing import List, Dict, Any, TypedDict, Annotated
from dotenv import load_dotenv

from langchain_core.tools import tool
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langgraph.graph import StateGraph, END
from langgraph.checkpoint.memory import MemorySaver
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
from langchain_groq import ChatGroq

load_dotenv()

# Enhanced system prompt for proper question-answering
ENHANCED_SYSTEM_PROMPT = (
    "You are a helpful assistant tasked with answering questions using available tools. "
    "Follow these guidelines:\n"
    "1. Read the question carefully and understand what is being asked\n"
    "2. Use available tools when you need external information\n"
    "3. Provide accurate, specific answers based on the information you find\n"
    "4. For numbers: don't use commas or units unless specified\n"
    "5. For strings: don't use articles or abbreviations, write digits in plain text\n"
    "6. Always end with 'FINAL ANSWER: [YOUR ANSWER]' where [YOUR ANSWER] is concise\n"
    "7. Never repeat the question as your answer\n"
    "8. If you cannot find the answer, state 'Information not available'\n"
)

# ---- Tool Definitions ----
@tool
def multiply(a: int, b: int) -> int:
    """Multiply two integers and return the product."""
    return a * b

@tool
def add(a: int, b: int) -> int:
    """Add two integers and return the sum."""
    return a + b

@tool
def subtract(a: int, b: int) -> int:
    """Subtract the second integer from the first and return the difference."""
    return a - b

@tool
def divide(a: int, b: int) -> float:
    """Divide the first integer by the second and return the quotient."""
    if b == 0:
        raise ValueError("Cannot divide by zero.")
    return a / b

@tool
def modulus(a: int, b: int) -> int:
    """Return the remainder when dividing the first integer by the second."""
    return a % b

@tool
def optimized_web_search(query: str) -> str:
    """Perform web search using TavilySearchResults."""
    try:
        time.sleep(random.uniform(0.7, 1.5))
        search_tool = TavilySearchResults(max_results=3)
        docs = search_tool.invoke({"query": query})
        return "\n\n---\n\n".join(
            f"<Doc url='{d.get('url','')}'>{d.get('content','')[:800]}</Doc>"
            for d in docs
        )
    except Exception as e:
        return f"Web search failed: {e}"

@tool
def optimized_wiki_search(query: str) -> str:
    """Perform Wikipedia search and return content."""
    try:
        time.sleep(random.uniform(0.3, 1))
        docs = WikipediaLoader(query=query, load_max_docs=2).load()
        return "\n\n---\n\n".join(
            f"<Doc src='{d.metadata.get('source','Wikipedia')}'>{d.page_content[:1000]}</Doc>"
            for d in docs
        )
    except Exception as e:
        return f"Wikipedia search failed: {e}"

# ---- Enhanced Agent State ----
class EnhancedAgentState(TypedDict):
    """State structure for the enhanced agent system."""
    messages: Annotated[List[HumanMessage | AIMessage], operator.add]
    query: str
    agent_type: str
    final_answer: str
    perf: Dict[str, Any]
    agno_resp: str

# ---- Enhanced Multi-LLM System ----
class HybridLangGraphMultiLLMSystem:
    """Enhanced question-answering system with proper response handling."""
    
    def __init__(self):
        """Initialize the enhanced multi-LLM system."""
        self.tools = [
            multiply, add, subtract, divide, modulus,
            optimized_web_search, optimized_wiki_search
        ]
        self.graph = self._build_graph()

    def _llm(self, model_name: str) -> ChatGroq:
        """Create a Groq LLM instance."""
        return ChatGroq(
            model=model_name,
            temperature=0,
            api_key=os.getenv("GROQ_API_KEY")
        )

    def _build_graph(self) -> StateGraph:
        """Build the LangGraph state machine with proper response handling."""
        # Initialize LLMs
        llama8_llm = self._llm("llama3-8b-8192")
        llama70_llm = self._llm("llama3-70b-8192")
        deepseek_llm = self._llm("deepseek-chat")

        def router(st: EnhancedAgentState) -> EnhancedAgentState:
            """Route queries to appropriate LLM based on content analysis."""
            q = st["query"].lower()
            
            # Enhanced routing logic
            if any(keyword in q for keyword in ["calculate", "compute", "math", "multiply", "add", "subtract", "divide"]):
                t = "llama70"  # Use more powerful model for calculations
            elif any(keyword in q for keyword in ["search", "find", "lookup", "wikipedia", "information about"]):
                t = "search_enhanced"  # Use search-enhanced processing
            elif "deepseek" in q or any(keyword in q for keyword in ["analyze", "reasoning", "complex"]):
                t = "deepseek"
            elif "llama-8" in q:
                t = "llama8"
            elif len(q.split()) > 20:  # Complex queries
                t = "llama70"
            else:
                t = "llama8"  # Default for simple queries
                
            return {**st, "agent_type": t}

        def llama8_node(st: EnhancedAgentState) -> EnhancedAgentState:
            """Process query with Llama-3 8B model."""
            t0 = time.time()
            try:
                # Create enhanced prompt with context
                enhanced_query = f"""
                Question: {st["query"]}
                
                Please provide a direct, accurate answer to this question. Do not repeat the question.
                """
                
                sys = SystemMessage(content=ENHANCED_SYSTEM_PROMPT)
                res = llama8_llm.invoke([sys, HumanMessage(content=enhanced_query)])
                
                # Extract and clean the answer
                answer = res.content.strip()
                if "FINAL ANSWER:" in answer:
                    answer = answer.split("FINAL ANSWER:")[-1].strip()
                
                return {**st,
                        "final_answer": answer,
                        "perf": {"time": time.time() - t0, "prov": "Groq-Llama3-8B"}}
            except Exception as e:
                return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}}

        def llama70_node(st: EnhancedAgentState) -> EnhancedAgentState:
            """Process query with Llama-3 70B model."""
            t0 = time.time()
            try:
                # Create enhanced prompt with context
                enhanced_query = f"""
                Question: {st["query"]}
                
                Please provide a direct, accurate answer to this question. Do not repeat the question.
                """
                
                sys = SystemMessage(content=ENHANCED_SYSTEM_PROMPT)
                res = llama70_llm.invoke([sys, HumanMessage(content=enhanced_query)])
                
                # Extract and clean the answer
                answer = res.content.strip()
                if "FINAL ANSWER:" in answer:
                    answer = answer.split("FINAL ANSWER:")[-1].strip()
                
                return {**st,
                        "final_answer": answer,
                        "perf": {"time": time.time() - t0, "prov": "Groq-Llama3-70B"}}
            except Exception as e:
                return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}}

        def deepseek_node(st: EnhancedAgentState) -> EnhancedAgentState:
            """Process query with DeepSeek model."""
            t0 = time.time()
            try:
                # Create enhanced prompt with context
                enhanced_query = f"""
                Question: {st["query"]}
                
                Please provide a direct, accurate answer to this question. Do not repeat the question.
                """
                
                sys = SystemMessage(content=ENHANCED_SYSTEM_PROMPT)
                res = deepseek_llm.invoke([sys, HumanMessage(content=enhanced_query)])
                
                # Extract and clean the answer
                answer = res.content.strip()
                if "FINAL ANSWER:" in answer:
                    answer = answer.split("FINAL ANSWER:")[-1].strip()
                
                return {**st,
                        "final_answer": answer,
                        "perf": {"time": time.time() - t0, "prov": "Groq-DeepSeek"}}
            except Exception as e:
                return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}}

        def search_enhanced_node(st: EnhancedAgentState) -> EnhancedAgentState:
            """Process query with search enhancement."""
            t0 = time.time()
            
            try:
                # Determine search strategy
                query = st["query"]
                search_results = ""
                
                if any(keyword in query.lower() for keyword in ["wikipedia", "wiki"]):
                    search_results = optimized_wiki_search.invoke({"query": query})
                else:
                    search_results = optimized_web_search.invoke({"query": query})
                
                # Create comprehensive prompt with search results
                enhanced_query = f"""
                Original Question: {query}
                
                Search Results:
                {search_results}
                
                Based on the search results above, provide a direct answer to the original question.
                Extract the specific information requested. Do not repeat the question.
                """
                
                sys = SystemMessage(content=ENHANCED_SYSTEM_PROMPT)
                res = llama70_llm.invoke([sys, HumanMessage(content=enhanced_query)])
                
                # Extract and clean the answer
                answer = res.content.strip()
                if "FINAL ANSWER:" in answer:
                    answer = answer.split("FINAL ANSWER:")[-1].strip()
                
                return {**st,
                        "final_answer": answer,
                        "perf": {"time": time.time() - t0, "prov": "Search-Enhanced-Llama70"}}
            except Exception as e:
                return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}}

        # Build graph
        g = StateGraph(EnhancedAgentState)
        g.add_node("router", router)
        g.add_node("llama8", llama8_node)
        g.add_node("llama70", llama70_node)
        g.add_node("deepseek", deepseek_node)
        g.add_node("search_enhanced", search_enhanced_node)
        
        g.set_entry_point("router")
        g.add_conditional_edges("router", lambda s: s["agent_type"], {
            "llama8": "llama8",
            "llama70": "llama70",
            "deepseek": "deepseek",
            "search_enhanced": "search_enhanced"
        })
        
        for node in ["llama8", "llama70", "deepseek", "search_enhanced"]:
            g.add_edge(node, END)
            
        return g.compile(checkpointer=MemorySaver())

    def process_query(self, q: str) -> str:
        """Process a query and return the final answer."""
        state = {
            "messages": [HumanMessage(content=q)],
            "query": q,
            "agent_type": "",
            "final_answer": "",
            "perf": {},
            "agno_resp": ""
        }
        cfg = {"configurable": {"thread_id": f"qa_{hash(q)}"}}
        
        try:
            out = self.graph.invoke(state, cfg)
            answer = out.get("final_answer", "").strip()
            
            # Ensure we don't return the question as the answer
            if answer == q or answer.startswith(q):
                return "Information not available"
            
            return answer if answer else "No answer generated"
        except Exception as e:
            return f"Error processing query: {e}"

def build_graph(provider: str | None = None) -> StateGraph:
    """Build and return the graph for the enhanced agent system."""
    return HybridLangGraphMultiLLMSystem().graph

if __name__ == "__main__":
    # Test the system
    qa_system = HybridLangGraphMultiLLMSystem()
    
    test_questions = [
        "What is 25 multiplied by 17?",
        "Who was the first president of the United States?",
        "Find information about artificial intelligence on Wikipedia"
    ]
    
    for question in test_questions:
        print(f"Question: {question}")
        answer = qa_system.process_query(question)
        print(f"Answer: {answer}")
        print("-" * 50)