Spaces:
Sleeping
Sleeping
File size: 12,927 Bytes
5092552 86c8869 5092552 d4557ee f4505e9 86c8869 e292008 1fa6961 f4505e9 0c69489 e292008 0c69489 e292008 f4505e9 5092552 86c8869 5092552 86c8869 5092552 a35ea13 86c8869 f4505e9 86c8869 f0e66e7 f4505e9 86c8869 f0e66e7 1fa6961 f4505e9 86c8869 f0e66e7 cc467c2 f4505e9 86c8869 f4505e9 86c8869 f0e66e7 a55679f f4505e9 86c8869 25c1140 e292008 86c8869 a55679f 5092552 a55679f 25c1140 d4557ee 0f81d99 f4505e9 9a3d597 86c8869 25c1140 e292008 5092552 a55679f 5092552 a55679f 25c1140 d4557ee b1b6e20 5092552 a55679f 86c8869 e292008 f4505e9 e292008 d4557ee f4505e9 5092552 86c8869 5092552 e292008 86c8869 a55679f d4557ee a55679f 5092552 86c8869 e292008 5092552 86c8869 5092552 e292008 a55679f 86c8869 a55679f 5092552 86c8869 5092552 86c8869 5092552 a35ea13 86c8869 5092552 e292008 5092552 86c8869 a55679f e292008 5092552 0c69489 5092552 86c8869 5092552 86c8869 5092552 86c8869 5092552 86c8869 5092552 0c69489 e292008 5092552 0c69489 5092552 86c8869 5092552 86c8869 5092552 86c8869 5092552 86c8869 5092552 0c69489 e292008 5092552 0c69489 5092552 86c8869 5092552 86c8869 5092552 86c8869 5092552 86c8869 5092552 a55679f 5092552 86c8869 5092552 86c8869 5092552 86c8869 5092552 86c8869 5092552 86c8869 5092552 86c8869 5092552 0c69489 e292008 0c69489 5092552 0ab2059 5092552 d4557ee 0f81d99 0c69489 86c8869 0c69489 86c8869 72c7dbb 5092552 86c8869 5092552 86c8869 5092552 86c8869 5092552 86c8869 0c69489 86c8869 5092552 86c8869 5092552 86c8869 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
"""
Enhanced Multi-LLM Agent System - CORRECTED VERSION
Fixes the issue where questions are returned as answers
"""
import os
import time
import random
import operator
from typing import List, Dict, Any, TypedDict, Annotated
from dotenv import load_dotenv
from langchain_core.tools import tool
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langgraph.graph import StateGraph, END
from langgraph.checkpoint.memory import MemorySaver
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
from langchain_groq import ChatGroq
load_dotenv()
# Enhanced system prompt for proper question-answering
ENHANCED_SYSTEM_PROMPT = (
"You are a helpful assistant tasked with answering questions using available tools. "
"Follow these guidelines:\n"
"1. Read the question carefully and understand what is being asked\n"
"2. Use available tools when you need external information\n"
"3. Provide accurate, specific answers based on the information you find\n"
"4. For numbers: don't use commas or units unless specified\n"
"5. For strings: don't use articles or abbreviations, write digits in plain text\n"
"6. Always end with 'FINAL ANSWER: [YOUR ANSWER]' where [YOUR ANSWER] is concise\n"
"7. Never repeat the question as your answer\n"
"8. If you cannot find the answer, state 'Information not available'\n"
)
# ---- Tool Definitions ----
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two integers and return the product."""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two integers and return the sum."""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract the second integer from the first and return the difference."""
return a - b
@tool
def divide(a: int, b: int) -> float:
"""Divide the first integer by the second and return the quotient."""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Return the remainder when dividing the first integer by the second."""
return a % b
@tool
def optimized_web_search(query: str) -> str:
"""Perform web search using TavilySearchResults."""
try:
time.sleep(random.uniform(0.7, 1.5))
search_tool = TavilySearchResults(max_results=3)
docs = search_tool.invoke({"query": query})
return "\n\n---\n\n".join(
f"<Doc url='{d.get('url','')}'>{d.get('content','')[:800]}</Doc>"
for d in docs
)
except Exception as e:
return f"Web search failed: {e}"
@tool
def optimized_wiki_search(query: str) -> str:
"""Perform Wikipedia search and return content."""
try:
time.sleep(random.uniform(0.3, 1))
docs = WikipediaLoader(query=query, load_max_docs=2).load()
return "\n\n---\n\n".join(
f"<Doc src='{d.metadata.get('source','Wikipedia')}'>{d.page_content[:1000]}</Doc>"
for d in docs
)
except Exception as e:
return f"Wikipedia search failed: {e}"
# ---- Enhanced Agent State ----
class EnhancedAgentState(TypedDict):
"""State structure for the enhanced agent system."""
messages: Annotated[List[HumanMessage | AIMessage], operator.add]
query: str
agent_type: str
final_answer: str
perf: Dict[str, Any]
agno_resp: str
# ---- Enhanced Multi-LLM System ----
class HybridLangGraphMultiLLMSystem:
"""Enhanced question-answering system with proper response handling."""
def __init__(self):
"""Initialize the enhanced multi-LLM system."""
self.tools = [
multiply, add, subtract, divide, modulus,
optimized_web_search, optimized_wiki_search
]
self.graph = self._build_graph()
def _llm(self, model_name: str) -> ChatGroq:
"""Create a Groq LLM instance."""
return ChatGroq(
model=model_name,
temperature=0,
api_key=os.getenv("GROQ_API_KEY")
)
def _build_graph(self) -> StateGraph:
"""Build the LangGraph state machine with proper response handling."""
# Initialize LLMs
llama8_llm = self._llm("llama3-8b-8192")
llama70_llm = self._llm("llama3-70b-8192")
deepseek_llm = self._llm("deepseek-chat")
def router(st: EnhancedAgentState) -> EnhancedAgentState:
"""Route queries to appropriate LLM based on content analysis."""
q = st["query"].lower()
# Enhanced routing logic
if any(keyword in q for keyword in ["calculate", "compute", "math", "multiply", "add", "subtract", "divide"]):
t = "llama70" # Use more powerful model for calculations
elif any(keyword in q for keyword in ["search", "find", "lookup", "wikipedia", "information about"]):
t = "search_enhanced" # Use search-enhanced processing
elif "deepseek" in q or any(keyword in q for keyword in ["analyze", "reasoning", "complex"]):
t = "deepseek"
elif "llama-8" in q:
t = "llama8"
elif len(q.split()) > 20: # Complex queries
t = "llama70"
else:
t = "llama8" # Default for simple queries
return {**st, "agent_type": t}
def llama8_node(st: EnhancedAgentState) -> EnhancedAgentState:
"""Process query with Llama-3 8B model."""
t0 = time.time()
try:
# Create enhanced prompt with context
enhanced_query = f"""
Question: {st["query"]}
Please provide a direct, accurate answer to this question. Do not repeat the question.
"""
sys = SystemMessage(content=ENHANCED_SYSTEM_PROMPT)
res = llama8_llm.invoke([sys, HumanMessage(content=enhanced_query)])
# Extract and clean the answer
answer = res.content.strip()
if "FINAL ANSWER:" in answer:
answer = answer.split("FINAL ANSWER:")[-1].strip()
return {**st,
"final_answer": answer,
"perf": {"time": time.time() - t0, "prov": "Groq-Llama3-8B"}}
except Exception as e:
return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}}
def llama70_node(st: EnhancedAgentState) -> EnhancedAgentState:
"""Process query with Llama-3 70B model."""
t0 = time.time()
try:
# Create enhanced prompt with context
enhanced_query = f"""
Question: {st["query"]}
Please provide a direct, accurate answer to this question. Do not repeat the question.
"""
sys = SystemMessage(content=ENHANCED_SYSTEM_PROMPT)
res = llama70_llm.invoke([sys, HumanMessage(content=enhanced_query)])
# Extract and clean the answer
answer = res.content.strip()
if "FINAL ANSWER:" in answer:
answer = answer.split("FINAL ANSWER:")[-1].strip()
return {**st,
"final_answer": answer,
"perf": {"time": time.time() - t0, "prov": "Groq-Llama3-70B"}}
except Exception as e:
return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}}
def deepseek_node(st: EnhancedAgentState) -> EnhancedAgentState:
"""Process query with DeepSeek model."""
t0 = time.time()
try:
# Create enhanced prompt with context
enhanced_query = f"""
Question: {st["query"]}
Please provide a direct, accurate answer to this question. Do not repeat the question.
"""
sys = SystemMessage(content=ENHANCED_SYSTEM_PROMPT)
res = deepseek_llm.invoke([sys, HumanMessage(content=enhanced_query)])
# Extract and clean the answer
answer = res.content.strip()
if "FINAL ANSWER:" in answer:
answer = answer.split("FINAL ANSWER:")[-1].strip()
return {**st,
"final_answer": answer,
"perf": {"time": time.time() - t0, "prov": "Groq-DeepSeek"}}
except Exception as e:
return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}}
def search_enhanced_node(st: EnhancedAgentState) -> EnhancedAgentState:
"""Process query with search enhancement."""
t0 = time.time()
try:
# Determine search strategy
query = st["query"]
search_results = ""
if any(keyword in query.lower() for keyword in ["wikipedia", "wiki"]):
search_results = optimized_wiki_search.invoke({"query": query})
else:
search_results = optimized_web_search.invoke({"query": query})
# Create comprehensive prompt with search results
enhanced_query = f"""
Original Question: {query}
Search Results:
{search_results}
Based on the search results above, provide a direct answer to the original question.
Extract the specific information requested. Do not repeat the question.
"""
sys = SystemMessage(content=ENHANCED_SYSTEM_PROMPT)
res = llama70_llm.invoke([sys, HumanMessage(content=enhanced_query)])
# Extract and clean the answer
answer = res.content.strip()
if "FINAL ANSWER:" in answer:
answer = answer.split("FINAL ANSWER:")[-1].strip()
return {**st,
"final_answer": answer,
"perf": {"time": time.time() - t0, "prov": "Search-Enhanced-Llama70"}}
except Exception as e:
return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}}
# Build graph
g = StateGraph(EnhancedAgentState)
g.add_node("router", router)
g.add_node("llama8", llama8_node)
g.add_node("llama70", llama70_node)
g.add_node("deepseek", deepseek_node)
g.add_node("search_enhanced", search_enhanced_node)
g.set_entry_point("router")
g.add_conditional_edges("router", lambda s: s["agent_type"], {
"llama8": "llama8",
"llama70": "llama70",
"deepseek": "deepseek",
"search_enhanced": "search_enhanced"
})
for node in ["llama8", "llama70", "deepseek", "search_enhanced"]:
g.add_edge(node, END)
return g.compile(checkpointer=MemorySaver())
def process_query(self, q: str) -> str:
"""Process a query and return the final answer."""
state = {
"messages": [HumanMessage(content=q)],
"query": q,
"agent_type": "",
"final_answer": "",
"perf": {},
"agno_resp": ""
}
cfg = {"configurable": {"thread_id": f"qa_{hash(q)}"}}
try:
out = self.graph.invoke(state, cfg)
answer = out.get("final_answer", "").strip()
# Ensure we don't return the question as the answer
if answer == q or answer.startswith(q):
return "Information not available"
return answer if answer else "No answer generated"
except Exception as e:
return f"Error processing query: {e}"
def build_graph(provider: str | None = None) -> StateGraph:
"""Build and return the graph for the enhanced agent system."""
return HybridLangGraphMultiLLMSystem().graph
if __name__ == "__main__":
# Test the system
qa_system = HybridLangGraphMultiLLMSystem()
test_questions = [
"What is 25 multiplied by 17?",
"Who was the first president of the United States?",
"Find information about artificial intelligence on Wikipedia"
]
for question in test_questions:
print(f"Question: {question}")
answer = qa_system.process_query(question)
print(f"Answer: {answer}")
print("-" * 50)
|