File size: 14,714 Bytes
7cc7889
 
 
 
 
 
 
 
1fa6961
7cc7889
 
1fa6961
7cc7889
 
 
 
 
 
0f81d99
7cc7889
 
0f81d99
7cc7889
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fa6961
7cc7889
 
 
 
 
 
 
1fa6961
7cc7889
 
 
 
 
 
1fa6961
7cc7889
 
 
cc467c2
7cc7889
25c1140
7cc7889
 
25c1140
7cc7889
 
 
 
 
0f81d99
7cc7889
 
25c1140
7cc7889
 
 
 
 
 
 
 
 
 
25c1140
7cc7889
 
b1b6e20
7cc7889
 
 
 
 
 
 
 
 
 
 
25c1140
7cc7889
 
 
 
 
eb69d08
7cc7889
 
 
eb69d08
7cc7889
eb69d08
7cc7889
 
 
 
eb69d08
7cc7889
 
 
 
 
eb69d08
7cc7889
 
 
eb69d08
7cc7889
 
 
 
 
 
 
 
 
 
 
eb69d08
7cc7889
eb69d08
7cc7889
 
 
 
 
 
 
 
eb69d08
7cc7889
eb69d08
7cc7889
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb69d08
7cc7889
 
 
 
 
 
 
 
 
 
 
eb69d08
7cc7889
 
 
 
 
 
 
 
 
 
 
eb69d08
7cc7889
 
 
 
 
eb69d08
7cc7889
 
 
 
 
eb69d08
7cc7889
 
 
 
 
 
 
 
 
 
 
 
eb69d08
7cc7889
eb69d08
7cc7889
 
 
 
 
eb69d08
7cc7889
 
 
 
 
eb69d08
7cc7889
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f81d99
7cc7889
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f81d99
7cc7889
 
 
 
 
 
 
 
 
 
 
 
0f81d99
7c04f3e
7cc7889
 
 
eb69d08
7cc7889
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb69d08
7cc7889
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
""" Enhanced Hybrid Agent Evaluation Runner"""
import os
import inspect
import gradio as gr
import requests
import pandas as pd
from langchain_core.messages import HumanMessage
from agent import HybridLangGraphAgnoSystem

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- Enhanced Basic Agent Definition ---
class BasicAgent:
    """A hybrid LangGraph + Agno agent with performance optimization."""
    def __init__(self):
        print("BasicAgent initialized with Hybrid LangGraph + Agno System.")
        self.hybrid_system = HybridLangGraphAgnoSystem()

    def __call__(self, question: str) -> str:
        print(f"Agent received question: {question}")
        
        try:
            # Process query using hybrid system
            result = self.hybrid_system.process_query(question)
            
            # Extract final answer
            answer = result.get("answer", "No response generated")
            
            # Clean up the answer - extract only final answer if present
            if "FINAL ANSWER:" in answer:
                final_answer = answer.split("FINAL ANSWER:")[-1].strip()
            else:
                final_answer = answer.strip()
            
            # Log performance metrics for debugging
            metrics = result.get("performance_metrics", {})
            provider = result.get("provider_used", "Unknown")
            processing_time = metrics.get("total_time", 0)
            
            print(f"Provider used: {provider}, Processing time: {processing_time:.2f}s")
            
            return final_answer
            
        except Exception as e:
            print(f"Error in agent processing: {e}")
            return f"Error: {str(e)}"

def run_and_submit_all(profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the Enhanced Hybrid Agent on them, submits all answers,
    and displays the results with performance metrics.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code

    if profile:
        username= f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Enhanced Hybrid Agent
    try:
        agent = BasicAgent()
        print("βœ… Hybrid LangGraph + Agno Agent initialized successfully")
    except Exception as e:
        print(f"❌ Error instantiating hybrid agent: {e}")
        return f"Error initializing hybrid agent: {e}", None
    
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(f"πŸ”— Agent code repository: {agent_code}")

    # 2. Fetch Questions
    print(f"πŸ“₯ Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
             print("❌ Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None
        print(f"βœ… Fetched {len(questions_data)} questions successfully.")
    except requests.exceptions.RequestException as e:
        print(f"❌ Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except Exception as e:
        print(f"❌ An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run Enhanced Hybrid Agent with Performance Tracking
    results_log = []
    answers_payload = []
    performance_stats = {
        "langgraph_math": 0,
        "agno_research": 0,
        "langgraph_retrieval": 0,
        "agno_general": 0,
        "errors": 0,
        "total_processing_time": 0
    }
    
    print(f"πŸš€ Running Enhanced Hybrid Agent on {len(questions_data)} questions...")
    
    for i, item in enumerate(questions_data, 1):
        task_id = item.get("task_id")
        question_text = item.get("question")
        
        if not task_id or question_text is None:
            print(f"⚠️ Skipping item {i} with missing task_id or question: {item}")
            continue
            
        print(f"πŸ”„ Processing question {i}/{len(questions_data)}: {task_id}")
        
        try:
            # Get detailed result from hybrid system
            detailed_result = agent.hybrid_system.process_query(question_text)
            submitted_answer = detailed_result.get("answer", "No response")
            
            # Extract final answer
            if "FINAL ANSWER:" in submitted_answer:
                clean_answer = submitted_answer.split("FINAL ANSWER:")[-1].strip()
            else:
                clean_answer = submitted_answer.strip()
            
            # Track performance metrics
            provider = detailed_result.get("provider_used", "Unknown")
            processing_time = detailed_result.get("performance_metrics", {}).get("total_time", 0)
            
            # Update performance stats
            if "LangGraph" in provider:
                if "Math" in provider:
                    performance_stats["langgraph_math"] += 1
                else:
                    performance_stats["langgraph_retrieval"] += 1
            elif "Agno" in provider:
                if "Research" in provider:
                    performance_stats["agno_research"] += 1
                else:
                    performance_stats["agno_general"] += 1
            
            performance_stats["total_processing_time"] += processing_time
            
            answers_payload.append({"task_id": task_id, "submitted_answer": clean_answer})
            results_log.append({
                "Task ID": task_id, 
                "Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
                "Submitted Answer": clean_answer,
                "Provider": provider,
                "Processing Time (s)": f"{processing_time:.2f}"
            })
            
            print(f"βœ… Question {i} processed successfully using {provider}")
            
        except Exception as e:
             print(f"❌ Error running agent on task {task_id}: {e}")
             performance_stats["errors"] += 1
             results_log.append({
                 "Task ID": task_id, 
                 "Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
                 "Submitted Answer": f"AGENT ERROR: {e}",
                 "Provider": "Error",
                 "Processing Time (s)": "0.00"
             })

    if not answers_payload:
        print("❌ Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Performance Summary
    avg_processing_time = performance_stats["total_processing_time"] / len(answers_payload) if answers_payload else 0
    performance_summary = f"""
    πŸ“Š Performance Summary:
    β€’ LangGraph Math: {performance_stats['langgraph_math']} queries
    β€’ Agno Research: {performance_stats['agno_research']} queries  
    β€’ LangGraph Retrieval: {performance_stats['langgraph_retrieval']} queries
    β€’ Agno General: {performance_stats['agno_general']} queries
    β€’ Errors: {performance_stats['errors']} queries
    β€’ Average Processing Time: {avg_processing_time:.2f}s
    β€’ Total Processing Time: {performance_stats['total_processing_time']:.2f}s
    """
    print(performance_summary)

    # 5. Prepare Submission 
    submission_data = {
        "username": username.strip(), 
        "agent_code": agent_code, 
        "answers": answers_payload
    }
    status_update = f"🎯 Hybrid Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 6. Submit Results
    print(f"πŸ“€ Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=120)  # Increased timeout
        response.raise_for_status()
        result_data = response.json()
        
        final_status = (
            f"πŸŽ‰ Submission Successful!\n"
            f"πŸ‘€ User: {result_data.get('username')}\n"
            f"πŸ† Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"πŸ’¬ Message: {result_data.get('message', 'No message received.')}\n"
            f"{performance_summary}"
        )
        print("βœ… Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
        
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"❌ Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
        
    except requests.exceptions.Timeout:
        status_message = "❌ Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
        
    except requests.exceptions.RequestException as e:
        status_message = f"❌ Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
        
    except Exception as e:
        status_message = f"❌ An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df

# --- Enhanced Gradio Interface ---
with gr.Blocks(title="Enhanced Hybrid Agent Evaluation") as demo:
    gr.Markdown("# πŸš€ Enhanced Hybrid LangGraph + Agno Agent Evaluation Runner")
    gr.Markdown(
        """
        ## 🎯 **Advanced AI Agent System**
        
        This evaluation runner uses a **Hybrid LangGraph + Agno Agent System** that combines the best of both frameworks:
        
        ### 🧠 **Intelligent Routing System**
        - **πŸ”’ Mathematical Queries** β†’ LangGraph (Groq Llama 3.3 70B) - *Optimized for speed*
        - **πŸ” Complex Research** β†’ Agno (Gemini 2.0 Flash-Lite) - *Optimized for reasoning*
        - **πŸ“š Factual Retrieval** β†’ LangGraph + FAISS Vector Store - *Optimized for accuracy*
        - **🎭 General Queries** β†’ Agno Multi-Agent System - *Optimized for comprehensiveness*
        
        ### ⚑ **Performance Features**
        - **Rate Limiting**: Intelligent rate management for free tier models
        - **Caching**: Performance optimization with query caching
        - **Fallback Systems**: Automatic provider switching on failures
        - **Performance Tracking**: Real-time metrics and provider usage stats
        
        ### πŸ›  **Tools & Capabilities**
        - Mathematical calculations (add, subtract, multiply, divide, modulus)
        - Web search (Tavily, Wikipedia, ArXiv)
        - FAISS vector database for similar question retrieval
        - Memory persistence across sessions
        
        ---
        
        **Instructions:**
        1. πŸ” Log in to your Hugging Face account using the button below
        2. πŸš€ Click 'Run Evaluation & Submit All Answers' to start the evaluation
        3. πŸ“Š Monitor real-time performance metrics and provider usage
        4. πŸ† View your final score and detailed results
        
        **Note:** The hybrid system automatically selects the optimal AI provider for each question type to maximize both speed and accuracy.
        """
    )

    gr.LoginButton()

    with gr.Row():
        run_button = gr.Button(
            "πŸš€ Run Evaluation & Submit All Answers", 
            variant="primary", 
            size="lg"
        )

    status_output = gr.Textbox(
        label="πŸ“Š Run Status / Submission Result", 
        lines=10, 
        interactive=False,
        placeholder="Status updates will appear here..."
    )
    
    results_table = gr.DataFrame(
        label="πŸ“‹ Questions, Answers & Performance Metrics", 
        wrap=True,
        height=400
    )

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

    # Add footer with system info
    gr.Markdown(
        """
        ---
        ### πŸ”§ **System Information**
        - **Primary Models**: Groq Llama 3.3 70B, Gemini 2.0 Flash-Lite, NVIDIA Llama 3.1 70B
        - **Frameworks**: LangGraph + Agno Hybrid Architecture
        - **Vector Store**: FAISS with NVIDIA Embeddings
        - **Rate Limiting**: Advanced rate management with exponential backoff
        - **Memory**: Persistent agent memory with session summaries
        """
    )

if __name__ == "__main__":
    print("\n" + "="*80)
    print("πŸš€ ENHANCED HYBRID AGENT EVALUATION RUNNER")
    print("="*80)
    
    # Check for environment variables
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID")

    if space_host_startup:
        print(f"βœ… SPACE_HOST found: {space_host_startup}")
        print(f"   🌐 Runtime URL: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup:
        print(f"βœ… SPACE_ID found: {space_id_startup}")
        print(f"   πŸ“ Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   🌳 Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?).")

    print("\n🎯 System Features:")
    print("   β€’ Hybrid LangGraph + Agno Architecture")
    print("   β€’ Intelligent Query Routing")
    print("   β€’ Performance Optimization")
    print("   β€’ Advanced Rate Limiting")
    print("   β€’ FAISS Vector Database")
    print("   β€’ Multi-Provider Fallbacks")
    
    print("\n" + "="*80)
    print("πŸŽ‰ Launching Enhanced Gradio Interface...")
    print("="*80 + "\n")

    demo.launch(debug=True, share=False)