File size: 5,962 Bytes
10e9b7d
 
57f85de
2ba0de9
 
e25ef11
2ba0de9
 
 
 
 
 
 
 
 
57f85de
bd5a767
57f85de
e6bc26b
2ba0de9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e25ef11
1a8d658
7e4a06b
2ba0de9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e80aab9
2ba0de9
 
31243f4
2ba0de9
 
 
 
 
31243f4
2ba0de9
3c4371f
2ba0de9
e80aab9
2ba0de9
 
 
 
 
 
e25ef11
2ba0de9
 
 
 
 
 
 
 
 
e80aab9
 
 
2ba0de9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import os
import gradio as gr
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition, ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from supabase import create_client, Client

# Load environment variables
load_dotenv()

# Tool definitions remain unchanged
@tool
def multiply(a: int, b: int) -> int:
    return a * b

@tool
def add(a: int, b: int) -> int:
    return a + b

@tool
def subtract(a: int, b: int) -> int:
    return a - b

@tool
def divide(a: int, b: int) -> int:
    if b == 0:
        raise ValueError("Cannot divide by zero.")
    return a / b

@tool
def modulus(a: int, b: int) -> int:
    return a % b

@tool
def wiki_search(query: str) -> str:
    search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [f'<Document source="{doc.metadata["source"]}"/>\n{doc.page_content}\n</Document>' 
         for doc in search_docs])
    return {"wiki_results": formatted_search_docs}

@tool
def web_search(query: str) -> str:
    search_docs = TavilySearchResults(max_results=3).invoke(query)
    formatted_search_docs = "\n\n---\n\n".join(
        [f'<Document source="{doc.metadata["source"]}"/>\n{doc.page_content}\n</Document>' 
         for doc in search_docs])
    return {"web_results": formatted_search_docs}

@tool
def arvix_search(query: str) -> str:
    search_docs = ArxivLoader(query=query, load_max_docs=3).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [f'<Document source="{doc.metadata["source"]}"/>\n{doc.page_content[:1000]}\n</Document>' 
         for doc in search_docs])
    return {"arvix_results": formatted_search_docs}

# System prompt definition
SYSTEM_PROMPT = """You are a helpful assistant. For every question, reply with only the answer—no explanation, 
no units, and no extra words. If the answer is a number, just return the number. 
If it is a word or phrase, return only that. If it is a list, return a comma-separated list with no extra words. 
Do not include any prefix, suffix, or explanation."""
sys_msg = SystemMessage(content=SYSTEM_PROMPT)

# Initialize vector store
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
supabase: Client = create_client(
    os.environ["SUPABASE_URL"], 
    os.environ["SUPABASE_SERVICE_KEY"]
)
vector_store = SupabaseVectorStore(
    client=supabase,
    embedding=embeddings,
    table_name="documents",
)

tools = [multiply, add, subtract, divide, modulus, 
         wiki_search, web_search, arvix_search]

# Build graph function with multi-provider support
def build_graph(provider: str = "groq"):
    # Provider selection
    if provider == "google":
        llm = ChatGoogleGenerativeAI(
            model="gemini-2.0-flash", 
            temperature=0,
            api_key=os.getenv("GOOGLE_API_KEY")
        )
    elif provider == "groq":
        llm = ChatGroq(
            model="llama3-70b-8192", 
            temperature=0,
            api_key=os.getenv("GROQ_API_KEY")
        )
    elif provider == "huggingface":
        llm = ChatHuggingFace(
            llm=HuggingFaceEndpoint(
                endpoint_url="https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.2",
                temperature=0,
                api_key=os.getenv("HF_API_KEY")
            )
        )
    else:
        raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
    
    llm_with_tools = llm.bind_tools(tools)
    
    # Graph nodes
    def retriever(state: MessagesState):
        similar_question = vector_store.similarity_search(state["messages"][-1].content, k=1)
        if similar_question:
            example_msg = HumanMessage(content=f"Similar reference: {similar_question[0].page_content[:200]}...")
            return {"messages": state["messages"] + [example_msg]}
        return {"messages": state["messages"]}
    
    def assistant(state: MessagesState):
        return {"messages": [llm_with_tools.invoke(state["messages"])]}
    
    # Build graph
    builder = StateGraph(MessagesState)
    builder.add_node("retriever", retriever)
    builder.add_node("assistant", assistant)
    builder.add_node("tools", ToolNode(tools))
    
    builder.add_edge(START, "retriever")
    builder.add_edge("retriever", "assistant")
    builder.add_conditional_edges(
        "assistant",
        tools_condition,
    )
    builder.add_edge("tools", "assistant")
    
    return builder.compile()

# Gradio interface
def run_agent(question, provider):
    try:
        graph = build_graph(provider)
        messages = [HumanMessage(content=question)]
        result = graph.invoke({"messages": messages})
        final_answer = result["messages"][-1].content
        return final_answer
    except Exception as e:
        return f"Error: {str(e)}"

# Create Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("## LangGraph Multi-Provider Agent")
    
    provider = gr.Dropdown(
        choices=["groq", "google", "huggingface"],
        value="groq",
        label="LLM Provider"
    )
    
    question = gr.Textbox(label="Your Question")
    submit_btn = gr.Button("Run Agent")
    output = gr.Textbox(label="Agent Response", interactive=False)
    
    submit_btn.click(
        fn=run_agent,
        inputs=[question, provider],
        outputs=output
    )

if __name__ == "__main__":
    demo.launch()