Spaces:
Sleeping
Sleeping
File size: 11,845 Bytes
d4557ee f4505e9 1fa6961 f4505e9 0c69489 a35ea13 f4505e9 0c69489 f4505e9 0c69489 f4505e9 a35ea13 0c69489 f4505e9 0c69489 f4505e9 0c69489 f4505e9 1fa6961 f4505e9 0c69489 f4505e9 cc467c2 f4505e9 0c69489 f4505e9 0c69489 f4505e9 a55679f f4505e9 0c69489 25c1140 d4557ee a35ea13 a55679f 25c1140 d4557ee 0f81d99 f4505e9 9a3d597 0c69489 25c1140 a55679f d4557ee a55679f a35ea13 a55679f 25c1140 d4557ee b1b6e20 a35ea13 0c69489 a35ea13 0c69489 a35ea13 0c69489 a35ea13 0c69489 a35ea13 0c69489 a35ea13 f4505e9 0c69489 a35ea13 f4505e9 a35ea13 a55679f d4557ee f4505e9 d4557ee f4505e9 0c69489 a35ea13 a55679f d4557ee a55679f d4557ee a35ea13 a55679f a35ea13 a55679f 0c69489 a35ea13 0c69489 a35ea13 0c69489 a35ea13 0c69489 a35ea13 0c69489 a35ea13 0c69489 a35ea13 0c69489 a35ea13 0c69489 a35ea13 a55679f 0c69489 0ab2059 0c69489 0ab2059 0c69489 d4557ee 0f81d99 0c69489 72c7dbb 0c69489 a35ea13 0c69489 a35ea13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
import os
import time
import random
from dotenv import load_dotenv
from typing import List, Dict, Any, TypedDict, Annotated
import operator
from langchain_core.tools import tool
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.vectorstores import FAISS
from langchain.tools.retriever import create_retriever_tool
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
from langchain_community.embeddings import SentenceTransformerEmbeddings
from langgraph.graph import StateGraph, START, END
from langgraph.checkpoint.memory import MemorySaver
# Load environment variables
load_dotenv()
# ---- Tool Definitions ----
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two integers and return the product."""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two integers and return the sum."""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract the second integer from the first and return the difference."""
return a - b
@tool
def divide(a: int, b: int) -> float:
"""Divide the first integer by the second and return the quotient."""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Return the remainder of the division of the first integer by the second."""
return a % b
@tool
def optimized_web_search(query: str) -> str:
"""Perform an optimized web search using TavilySearchResults and return concatenated document snippets."""
try:
time.sleep(random.uniform(1, 2))
search_tool = TavilySearchResults(max_results=2)
docs = search_tool.invoke({"query": query})
return "\n\n---\n\n".join(
f"<Doc url='{d.get('url','')}'>{d.get('content','')[:500]}</Doc>"
for d in docs
)
except Exception as e:
return f"Web search failed: {e}"
@tool
def optimized_wiki_search(query: str) -> str:
"""Perform an optimized Wikipedia search and return concatenated document snippets."""
try:
time.sleep(random.uniform(0.5, 1))
docs = WikipediaLoader(query=query, load_max_docs=1).load()
return "\n\n---\n\n".join(
f"<Doc src='{d.metadata.get('source', 'Wikipedia')}'>{d.page_content[:800]}</Doc>"
for d in docs
)
except Exception as e:
return f"Wikipedia search failed: {e}"
# ---- LLM Integrations with Error Handling ----
try:
from langchain_groq import ChatGroq
GROQ_AVAILABLE = True
except ImportError:
GROQ_AVAILABLE = False
try:
from langchain_nvidia_ai_endpoints import ChatNVIDIA
NVIDIA_AVAILABLE = True
except ImportError:
NVIDIA_AVAILABLE = False
try:
import google.generativeai as genai
GEMINI_AVAILABLE = True
except ImportError:
GEMINI_AVAILABLE = False
import requests
def deepseek_generate(prompt, api_key=None):
"""Call DeepSeek API."""
if not api_key:
return "DeepSeek API key not provided"
url = "https://api.deepseek.com/v1/chat/completions"
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
data = {
"model": "deepseek-chat",
"messages": [{"role": "user", "content": prompt}],
"stream": False
}
try:
resp = requests.post(url, headers=headers, json=data, timeout=30)
resp.raise_for_status()
choices = resp.json().get("choices", [])
if choices and "message" in choices[0]:
return choices[0]["message"].get("content", "")
return "No response from DeepSeek"
except Exception as e:
return f"DeepSeek API error: {e}"
def baidu_ernie_generate(prompt, api_key=None):
"""Call Baidu ERNIE API (placeholder implementation)."""
if not api_key:
return "Baidu ERNIE API key not provided"
# Note: This is a placeholder. Replace with actual Baidu ERNIE API endpoint
try:
return f"Baidu ERNIE response for: {prompt[:50]}..."
except Exception as e:
return f"ERNIE API error: {e}"
# ---- Graph State ----
class EnhancedAgentState(TypedDict):
messages: Annotated[List[HumanMessage|AIMessage], operator.add]
query: str
agent_type: str
final_answer: str
perf: Dict[str,Any]
agno_resp: str
class HybridLangGraphMultiLLMSystem:
def __init__(self, provider="groq"):
self.provider = provider
self.tools = [
multiply, add, subtract, divide, modulus,
optimized_web_search, optimized_wiki_search
]
self.graph = self._build_graph()
def _build_graph(self):
# Initialize LLMs with error handling
groq_llm = None
nvidia_llm = None
if GROQ_AVAILABLE and os.getenv("GROQ_API_KEY"):
try:
groq_llm = ChatGroq(
model="llama3-70b-8192",
temperature=0,
api_key=os.getenv("GROQ_API_KEY")
)
except Exception as e:
print(f"Failed to initialize Groq: {e}")
if NVIDIA_AVAILABLE and os.getenv("NVIDIA_API_KEY"):
try:
nvidia_llm = ChatNVIDIA(
model="meta/llama3-70b-instruct",
temperature=0,
api_key=os.getenv("NVIDIA_API_KEY")
)
except Exception as e:
print(f"Failed to initialize NVIDIA: {e}")
def router(st: EnhancedAgentState) -> EnhancedAgentState:
q = st["query"].lower()
if "groq" in q and groq_llm:
t = "groq"
elif "nvidia" in q and nvidia_llm:
t = "nvidia"
elif ("gemini" in q or "google" in q) and GEMINI_AVAILABLE:
t = "gemini"
elif "deepseek" in q:
t = "deepseek"
elif "ernie" in q or "baidu" in q:
t = "baidu"
else:
# Default to first available provider
if groq_llm:
t = "groq"
elif nvidia_llm:
t = "nvidia"
elif GEMINI_AVAILABLE:
t = "gemini"
else:
t = "deepseek"
return {**st, "agent_type": t}
def groq_node(st: EnhancedAgentState) -> EnhancedAgentState:
if not groq_llm:
return {**st, "final_answer": "Groq not available", "perf": {"error": "No Groq LLM"}}
t0 = time.time()
try:
sys = SystemMessage(content="You are a helpful AI assistant. Provide accurate and detailed answers.")
res = groq_llm.invoke([sys, HumanMessage(content=st["query"])])
return {**st, "final_answer": res.content, "perf": {"time": time.time() - t0, "prov": "Groq"}}
except Exception as e:
return {**st, "final_answer": f"Groq error: {e}", "perf": {"error": str(e)}}
def nvidia_node(st: EnhancedAgentState) -> EnhancedAgentState:
if not nvidia_llm:
return {**st, "final_answer": "NVIDIA not available", "perf": {"error": "No NVIDIA LLM"}}
t0 = time.time()
try:
sys = SystemMessage(content="You are a helpful AI assistant. Provide accurate and detailed answers.")
res = nvidia_llm.invoke([sys, HumanMessage(content=st["query"])])
return {**st, "final_answer": res.content, "perf": {"time": time.time() - t0, "prov": "NVIDIA"}}
except Exception as e:
return {**st, "final_answer": f"NVIDIA error: {e}", "perf": {"error": str(e)}}
def gemini_node(st: EnhancedAgentState) -> EnhancedAgentState:
if not GEMINI_AVAILABLE:
return {**st, "final_answer": "Gemini not available", "perf": {"error": "Gemini not installed"}}
t0 = time.time()
try:
api_key = os.getenv("GEMINI_API_KEY")
if not api_key:
return {**st, "final_answer": "Gemini API key not provided", "perf": {"error": "No API key"}}
genai.configure(api_key=api_key)
model = genai.GenerativeModel("gemini-1.5-pro-latest")
res = model.generate_content(st["query"])
return {**st, "final_answer": res.text, "perf": {"time": time.time() - t0, "prov": "Gemini"}}
except Exception as e:
return {**st, "final_answer": f"Gemini error: {e}", "perf": {"error": str(e)}}
def deepseek_node(st: EnhancedAgentState) -> EnhancedAgentState:
t0 = time.time()
try:
resp = deepseek_generate(st["query"], api_key=os.getenv("DEEPSEEK_API_KEY"))
return {**st, "final_answer": resp, "perf": {"time": time.time() - t0, "prov": "DeepSeek"}}
except Exception as e:
return {**st, "final_answer": f"DeepSeek error: {e}", "perf": {"error": str(e)}}
def baidu_node(st: EnhancedAgentState) -> EnhancedAgentState:
t0 = time.time()
try:
resp = baidu_ernie_generate(st["query"], api_key=os.getenv("BAIDU_API_KEY"))
return {**st, "final_answer": resp, "perf": {"time": time.time() - t0, "prov": "ERNIE"}}
except Exception as e:
return {**st, "final_answer": f"ERNIE error: {e}", "perf": {"error": str(e)}}
def pick(st: EnhancedAgentState) -> str:
return st["agent_type"]
g = StateGraph(EnhancedAgentState)
g.add_node("router", router)
g.add_node("groq", groq_node)
g.add_node("nvidia", nvidia_node)
g.add_node("gemini", gemini_node)
g.add_node("deepseek", deepseek_node)
g.add_node("baidu", baidu_node)
g.set_entry_point("router")
g.add_conditional_edges("router", pick, {
"groq": "groq",
"nvidia": "nvidia",
"gemini": "gemini",
"deepseek": "deepseek",
"baidu": "baidu"
})
for n in ["groq", "nvidia", "gemini", "deepseek", "baidu"]:
g.add_edge(n, END)
return g.compile(checkpointer=MemorySaver())
def process_query(self, q: str) -> str:
state = {
"messages": [HumanMessage(content=q)],
"query": q,
"agent_type": "",
"final_answer": "",
"perf": {},
"agno_resp": ""
}
cfg = {"configurable": {"thread_id": f"hyb_{hash(q)}"}}
try:
out = self.graph.invoke(state, cfg)
raw_answer = out.get("final_answer", "No answer generated")
# Clean up the answer
if isinstance(raw_answer, str):
parts = raw_answer.split('\n\n')
answer_part = parts[1].strip() if len(parts) > 1 and len(parts[1].strip()) > 10 else raw_answer.strip()
return answer_part
return str(raw_answer)
except Exception as e:
return f"Error processing query: {e}"
# Function expected by app.py
def build_graph(provider="groq"):
"""Build and return the graph for the agent system."""
system = HybridLangGraphMultiLLMSystem(provider=provider)
return system.graph
if __name__ == "__main__":
query = "What are the names of the US presidents who were assassinated?"
system = HybridLangGraphMultiLLMSystem()
result = system.process_query(query)
print("LangGraph Hybrid Result:", result)
|