Spaces:
Sleeping
Sleeping
""" Enhanced Multi-LLM Agent Evaluation Runner - CORRECTED VERSION""" | |
import os | |
import gradio as gr | |
import requests | |
import pandas as pd | |
from langchain_core.messages import HumanMessage | |
from veryfinal import build_graph | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
# --- Enhanced Agent Definition --- | |
class EnhancedMultiLLMAgent: | |
"""A multi-provider LangGraph agent with proper response handling.""" | |
def __init__(self): | |
print("Enhanced Multi-LLM Agent initialized.") | |
try: | |
self.graph = build_graph(provider="groq") | |
print("Multi-LLM Graph built successfully.") | |
except Exception as e: | |
print(f"Error building graph: {e}") | |
self.graph = None | |
def __call__(self, question: str) -> str: | |
print(f"Agent received question: {question[:100]}...") | |
if self.graph is None: | |
return "Error: Agent not properly initialized" | |
# Create complete state structure | |
state = { | |
"messages": [HumanMessage(content=question)], | |
"query": question, # Critical: this must match the question | |
"agent_type": "", | |
"final_answer": "", | |
"perf": {}, | |
"agno_resp": "" | |
} | |
# Always provide the required config with thread_id | |
config = {"configurable": {"thread_id": f"eval_{hash(question)}"}} | |
try: | |
result = self.graph.invoke(state, config) | |
# CORRECTED: Proper response extraction | |
if isinstance(result, dict): | |
# First try to get final_answer from the state | |
if 'final_answer' in result and result['final_answer']: | |
answer = result['final_answer'] | |
# Fallback to messages if final_answer is empty | |
elif 'messages' in result and result['messages']: | |
last_message = result['messages'][-1] | |
if hasattr(last_message, 'content'): | |
answer = last_message.content | |
else: | |
answer = str(last_message) | |
else: | |
answer = str(result) | |
else: | |
answer = str(result) | |
# Clean the answer | |
answer = answer.strip() | |
# CRITICAL FIX: Ensure we don't return the question as answer | |
if answer == question or answer.startswith(question): | |
return "Information not available" | |
# Extract final answer if present | |
if "FINAL ANSWER:" in answer: | |
answer = answer.split("FINAL ANSWER:")[-1].strip() | |
# Additional validation | |
if not answer or len(answer.strip()) == 0: | |
return "No answer generated" | |
return answer | |
except Exception as e: | |
error_msg = f"Error: {str(e)}" | |
print(error_msg) | |
return error_msg | |
def run_and_submit_all(profile: gr.OAuthProfile | None): | |
"""Fetch questions, run agent, and submit answers.""" | |
space_id = os.getenv("SPACE_ID") | |
if profile: | |
username = f"{profile.username}" | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
# 1. Instantiate Agent | |
try: | |
agent = EnhancedMultiLLMAgent() | |
if agent.graph is None: | |
return "Error: Failed to initialize agent properly", None | |
except Exception as e: | |
print(f"Error instantiating agent: {e}") | |
return f"Error initializing agent: {e}", None | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "No space ID available" | |
print(f"Agent code URL: {agent_code}") | |
# 2. Fetch Questions | |
print(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
print("Fetched questions list is empty.") | |
return "Fetched questions list is empty or invalid format.", None | |
print(f"Fetched {len(questions_data)} questions.") | |
except Exception as e: | |
print(f"Error fetching questions: {e}") | |
return f"Error fetching questions: {e}", None | |
# 3. Run your Agent | |
results_log = [] | |
answers_payload = [] | |
print(f"Running Enhanced Multi-LLM agent on {len(questions_data)} questions...") | |
for i, item in enumerate(questions_data): | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
print(f"Skipping item with missing task_id or question: {item}") | |
continue | |
print(f"Processing question {i+1}/{len(questions_data)}: {task_id}") | |
try: | |
submitted_answer = agent(question_text) | |
# Additional validation to prevent question repetition | |
if submitted_answer == question_text or submitted_answer.startswith(question_text): | |
submitted_answer = "Information not available" | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({ | |
"Task ID": task_id, | |
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text, | |
"Submitted Answer": submitted_answer[:200] + "..." if len(submitted_answer) > 200 else submitted_answer | |
}) | |
except Exception as e: | |
error_msg = f"AGENT ERROR: {e}" | |
print(f"Error running agent on task {task_id}: {e}") | |
answers_payload.append({"task_id": task_id, "submitted_answer": error_msg}) | |
results_log.append({ | |
"Task ID": task_id, | |
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text, | |
"Submitted Answer": error_msg | |
}) | |
if not answers_payload: | |
print("Agent did not produce any answers to submit.") | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
# 4. Prepare Submission | |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
status_update = f"Enhanced Multi-LLM Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
print(status_update) | |
# 5. Submit | |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
print("Submission successful.") | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except Exception as e: | |
status_message = f"Submission Failed: {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
# --- Build Gradio Interface --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# Enhanced Multi-LLM Agent - CORRECTED VERSION") | |
gr.Markdown( | |
""" | |
**Instructions:** | |
1. Log in to your Hugging Face account using the button below. | |
2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. | |
**FIXES APPLIED:** | |
- β Proper response extraction from graph state | |
- β Prevention of question repetition as answer | |
- β Enhanced prompt engineering for better responses | |
- β Improved error handling and validation | |
- β Search-enhanced processing for information retrieval | |
""" | |
) | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click( | |
fn=run_and_submit_all, | |
outputs=[status_output, results_table] | |
) | |
if __name__ == "__main__": | |
print("\n" + "-"*30 + " Enhanced Multi-LLM Agent CORRECTED Starting " + "-"*30) | |
demo.launch(debug=True, share=False) | |